Abstract:
An organic light emitting device includes: a substrate; thin film structures formed on the substrate; a pixel electrode including a metal layer formed on the thin film structures, and a transparent conductor layer formed on the metal layer; a common electrode facing the pixel electrode; and an organic light emitting member disposed between the pixel electrode and the common electrode, wherein the organic light emitting member includes an emission layer and a plurality of auxiliary layers, and the profile thickness of a first layer as at least one layer among the emission layer and the auxiliary layers on the substrate is different from the profile thickness of at least one second layer that is different from the first layer among the emission layer and the auxiliary layers.
Abstract:
A transfer substrate includes a base layer, a light-reflecting layer pattern, a light-to-heat conversion layer and a transfer layer. The transfer layer is formed on the light-to-heat conversion layer. A line shaped laser beam may be scanned over the entire area of the transfer substrate to transfer designated portions of the transfer layer onto designated electrodes on an array substrate to make an organic electroluminescent display. Thus, processing time may be reduced, and an organic electroluminescent element may be efficiently formed on a large-size substrate.
Abstract:
A method of manufacturing an organic light emitting display device includes providing a panel including a first opening portion formed in a first substrate and a second opening portion spaced apart from the first opening portion, disposing a transmissive-window forming composition in the second opening portion, forming an organic layer in the first opening portion, forming a metal layer on the panel so as to cover the first opening portion and the second opening portion, and forming a transmissive window by volatilizing the transmissive-window forming composition to open a region of the metal layer corresponding to the second opening portion.
Abstract:
Embodiments relate to a method of manufacturing an image sensor which may include forming a gate pattern including a tunnel oxide film, an oxide-nitride-oxide (ONO) film, a floating gate and a control gate over a semiconductor substrate. An oxide film and a nitride film may be formed over the semiconductor substrate including the gate pattern. A photoresist pattern may be formed which covers the oxide film and the nitride film formed over the gate pattern. The nitride film may be etched in a region not covered by the photoresist pattern. The oxide film may be etched to have a predetermined thickness. A deep implant process may deeply implant an N-type dopant into the semiconductor substrate. Ashing and cleaning processes may remove the remaining photoresist pattern.
Abstract:
A method of manufacturing a display device includes preparing an acceptor substrate, preparing a donor substrate having an organic layer; aligning and combining the acceptor substrate and the donor substrate, and keeping a temperature difference between the acceptor substrate and the donor substrate to transfer the organic layer to the acceptor substrate. Thus, the present invention provides a display device that can simplify a process and decrease a consumption rate of an organic material.
Abstract:
An organic light emitting display device having high transmittance with respect to external light and a method of manufacturing the same. The organic light emitting display device includes a substrate; a plurality of pixels formed on the substrate, each of the pixels including a first region that emits light and a second region that transmits external light; a plurality of thin film transistors disposed in the first region of each pixel; a plurality of first electrodes disposed in the first region of each pixel and electrically connected to the thin film transistors, respectively; a second electrode formed opposite to the plurality of first electrodes and comprising a plurality of transmission windows corresponding to the second regions; and an organic layer formed between the first electrodes and the second electrode. The transmission windows can be formed in the second electrode, that is, a cathode.
Abstract:
A vapor deposition apparatus includes a linear head including a plurality of nozzles, and an angle controller controlling an inclined angle of the linear head. The angle of inclination of the linear head can be varied so as to position different portions of the linear head at different distances from the surface of a substrate.
Abstract:
Mechanisms regulating cell proliferation stop and differentiation initiation during the development stage of mammalian embryo, and the proteins involved therein, are presented. Differentiation regulators, methods of regulating differentiation, transgenic organisms with loss of expression of the differentiation regulator, and methods of preparing the transgenic organisms, are provided.
Abstract:
An organic light-emitting diode (“OLED”) device includes an organic light-emitting substrate part and a protective cover part. The organic light-emitting substrate part includes a base substrate and an OLED display portion formed on the base substrate to display an image. The protective cover part includes a first frit glass disposed on the OLED display portion to cover the OLED display portion, and a second frit glass formed around a periphery of the first frit glass. The second frit glass is connected to the first frit glass.
Abstract:
A vapor deposition apparatus includes a linear head including a plurality of nozzles, and an angle controller controlling an inclined angle of the linear head. The angle of inclination of the linear head can be varied so as to position different portions of the linear head at different distances from the surface of a substrate.