摘要:
Input/output (I/O) requests generated by processes are typically stored in I/O queues. Because the queued I/O requests may not be associated with the processes that generated them, changing a process' priority may not affect the priority of the I/O requests generated by the process. Therefore, after the process' priority has been increased, it may be forced to wait for an I/O handler to service its I/O request, which may be stuck behind an I/O request generated by a lower priority process. Functionality can be implemented to associate the processes' priorities with the I/O requests generated by the processes. Also, reordering the queued I/O requests to reflect changes in the processes' priorities can ensure that the I/O requests from high priority processes are serviced before the I/O requests from low priority processes. This can ensure efficient processing and lower wait times for high priority processes.
摘要:
A computer program product for scheduling threads in a multiprocessor computer comprises computer program instructions configured to select a thread in a ready queue to be dispatched to a processor and determine whether an interrupt mask flag is set in a thread control block associated with the thread. If the interrupt mask flag is set in the thread control block associated with the thread, the computer program instructions are configured to select a processor, set a current processor priority register of the selected processor to least favored, and dispatch the thread from the ready queue to the selected processor.
摘要:
Input/output (I/O) requests generated by processes are typically stored in I/O queues. Because the queued I/O requests may not be associated with the processes that generated them, changing a process' priority may not affect the priority of the I/O requests generated by the process. Therefore, after the process' priority has been increased, it may be forced to wait for an I/O handler to service its I/O request, which may be stuck behind an I/O request generated by a lower priority process. Functionality can be implemented to associate the processes' priorities with the I/O requests generated by the processes. Also, reordering the queued I/O requests to reflect changes in the processes' priorities can ensure that the I/O requests from high priority processes are serviced before the I/O requests from low priority processes. This can ensure efficient processing and lower wait times for high priority processes.
摘要:
Methods, systems, and computer program products are provided for scheduling threads in a multiprocessor computer. Embodiments include selecting a thread in a ready queue to be dispatched to a processor and determining whether an interrupt mask flag is set in a thread control block associated with the thread. If the interrupt mask flag is set in the thread control block associated with the thread, embodiments typically include selecting a processor, setting a current processor priority register of the selected processor to least favored, and dispatching the thread from the ready queue to the selected processor. In some embodiments, setting the current processor priority register of the selected processor to least favored is carried out by storing a value associated with the highest interrupt priority in the current processor priority register.
摘要:
Methods, systems, and computer program products are provided for scheduling threads in a multiprocessor computer. Embodiments include selecting a thread in a ready queue to be dispatched to a processor and determining whether an interrupt mask flag is set in a thread control block associated with the thread. If the interrupt mask flag is set in the thread control block associated with the thread, embodiments typically include selecting a processor, setting a current processor priority register of the selected processor to least favored, and dispatching the thread from the ready queue to the selected processor. In some embodiments, setting the current processor priority register of the selected processor to least favored is carried out by storing a value associated with the highest interrupt priority in the current processor priority register.
摘要:
A computer program product for scheduling threads in a multiprocessor computer comprises computer program instructions configured to select a thread in a ready queue to be dispatched to a processor and determine whether an interrupt mask flag is set in a thread control block associated with the thread. If the interrupt mask flag is set in the thread control block associated with the thread, the computer program instructions are configured to select a processor, set a current processor priority register of the selected processor to least favored, and dispatch the thread from the ready queue to the selected processor.
摘要:
An apparatus and method for an improved bulk read socket call are provided. With the apparatus and method, a new field, so_rcvlen, is added to the socket structure that identifies the bulk read size requested by the user. The kernel of the prior art recv( ) function is also modified so that it sets the so_rcvlen to the size requested by the user prior to the recv( ) function going to sleep and waiting for the full data size requested by the user. A new flag, SP_MSGWAITALL, is also provided in the socket structure. In the TCP input processing, when data is received for a particular socket, the current setting of the SP_MSGWAITALL is checked. If the SP_MSGWAITALL flag is set, it is determined whether the amount of data stored in the socket receive buffer is less than the value of so_rcvlen. If not, the TCP input processing does not wake up the recv( ) thread. However, for every alternate segment, the TCP input processing sends back an acknowledgment (ACK). In the TCP output processing, when the SP_MSGWAITALL flag is set and the amount of data in the socket receive buffer is less than so_rcvlen, the full window is advertised. Once the TCP input processing determines that there is at least an amount of data in the socket receive buffer equal to the value of so_rcvlen, the TCP input processing will wake up the recv( ) thread and the SP_MSGWAITALL flag is reset.
摘要:
The present invention provides a method that enables application instances to pass block mode storage requests directly to a physical I/O adapter without run-time involvement from the local operating system or hypervisor. Specifically, a mechanism for providing and using a linear block address (LBA) translation protection table (TPT) to control out of user space I/O operations is provided. In one aspect of the present invention, the LBATPT includes an adapter protection table that has entries for each portion of a storage device. Entries include access control values which identify whether the entry is valid and what access type operations may be performed on a corresponding portion of a storage device. I/O requests may be checked against these access control values to determine if an application instance that submitted the I/O requests may access the LBAs identified in the I/O requests in the manner requested.
摘要:
The present invention provides mechanisms that enable application instances to pass block mode storage requests directly to a physical I/O adapter without run-time involvement from the local operating system or hypervisor. In one aspect of the present invention, a mechanism is provided for handling user space creation and deletion operations for creating and deleting allocations of linear block addresses of a physical storage device to application instances. For creation, it is determined if there are sufficient available resources for creation of the allocation. For deletion, it is determined if there are any I/O transactions active on the allocation before performing the deletion. Allocation may be performed only if there are sufficient available resources and deletion may be performed only if there are no active I/O transactions on the allocation being deleted.
摘要:
A method, apparatus, and computer instructions for transferring data. The data in a first partition is received within a memory region assigned to the first partition in the logical partitioned data processing system to form received data. The memory region is assigned to a second partition, in response to a determination that the received data is for the second partition. The second partition may then access the data in the memory region.