摘要:
An electro-acoustic transducer (1) is disclosed, comprising a substrate (2) that comprises conducting paths (3), a cover (4) attached to said substrate (2) thus forming an inner chamber (A) and a space (B) outside said chamber (A), wherein said cover (4) comprises one or more ports (5). A MEMS sensor (6) of said transducer (1) has at least one hole (7) extending from a first side (C) to a second side (D). A membrane (8) is arranged in said hole (7) transverse to the hole axis (E) thus forming a first hole space (a) and a second hole space (b). The sensor (6) furthermore has electrical connectors (9) designed to carry electrical signals representing sound acting on said membrane (8), which connectors (9) are connected to said conducting paths (3). According to the invention, said MEMS sensor (6) is arranged inside said chamber (A) in such a way that said second hole space (b) is connected to said outside space (B) via said port or ports (5) and said first hole space (a) is connected to said inner chamber (A).
摘要:
A vibrating element (1) for an electroacoustic transducer, particularly for a loudspeaker, is provided, comprising a diaphragm (2) with at least two electrically conductive areas (3a, 3b) separated from each other, and with a recess (4). In the recess (4) a coil (5) is arranged with two connecting leads (6a, 6b), which are electrically contacted with one conductive area each (3a, 3b). The contact points (8a . . . 8d) are then located in the area of the recess (4). Furthermore, a method for the manufacturing of a vibrating element (1) is provided. The recess (4), the inserting of the coil (5) into the recess (4) as well as optionally the contacting of connecting leads (6a, 6b) with the conductive areas (3a, 3b) can then take place in one process step.
摘要:
A membrane (2′) for an electroacoustic transducer (1) is disclosed having a first area (A1), a second area (A2), which is arranged for translatory movement in relation to said first area (A1), and a third area (A3), which connects said first (A1) and said second area (A2), wherein local, planar spring constants (psc) along a closed line (L) within said third area (A3) encompassing said second area (A2), are determined in such a way that local, translatory spring constants (tsc) along said line (L) in a direction (DM) of said translatory movement are substantially constant or exclusively have substantially flat, mutual changes.
摘要:
A membrane for an electroacoustic transducer is disclosed, wherein said membrane (201) comprises a rigid membrane portion (202) having an edge (203); a flexible membrane portion (204) being connected to the rigid membrane portion (202) along the edge (203); wherein an exterior surface (205) of the flexible membrane portion (204) is concave in an idle state of the membrane (201) and shaped such that a change of the curvature of said exterior surface (205) contributes to an air volume shifted by the rigid membrane portion (202) when membrane (201) is excited.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
摘要:
A generating device (1) for generating a useful stream of a medium (2) comprises at least a medium stream source (14) for generating a high-frequency medium stream (15) and at least a medium stream diode (36, 37) for cooperating with the generated medium stream (15), and at least one medium stream sink (40, 41) for cooperating with the medium stream influenced by the medium stream diodes (36, 37), wherein the at least one medium stream sink (40, 41) suppresses high-frequency stream components in the medium stream such that a useful medium stream (2) in a low-frequency range is obtained.
摘要:
An acoustic device (500), comprising an oscillatory membrane (501) which comprises a transducing element (503) and a frame (504) adapted for accommodating the membrane (501) in an accommodation plane, wherein the membrane (501) is accommodated in the frame (504) in such a manner that a translational motion of the membrane (501) in at least one direction of the accommodation plane is made possible.
摘要:
The invention relates to a device for generating a medium stream, having a chamber, which chamber comprises chamber walls lying opposite one another and at least one medium opening for the medium stream, which medium stream can be generated in the chamber by a diaphragm, which diaphragm, in an inactive operating state of the device, is arranged substantially untensioned in the chamber between the chamber walls lying opposite one another, and associated with which diaphragm is a drive device, responsive to electrical drive signals, for driving the diaphragm to deform the same, the drive device being designed to impose a deformation on the diaphragm in an active operating state of the device, during which deformation the diaphragm has an inner mechanical tension.
摘要:
An acoustic device (500), comprising an oscillatory membrane (501) which comprises a transducing element (503) and a frame (504) adapted for accommodating the membrane (501) in an accommodation plane, wherein the membrane (501) is accommodated in the frame (504) in such a manner that a translational motion of the membrane (501) in at least one direction of the accommodation plane is made possible.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.