摘要:
A field effect transistor (FET) includes a drain formed of a first material, a source formed of the first material, a channel formed by a nanostructure coupling the source to the drain, and a gate formed between the source and the drain and surrounding the nanostructure.
摘要:
A field effect transistor (FET) includes a drain formed of a first material, a source formed of the first material, a channel formed by a nanostructure coupling the source to the drain, and a gate formed between the source and the drain and surrounding the nanostructure.
摘要:
Borderless self-aligned metal contacts to high density complementary metal oxide semiconductor (CMOS) circuits and methods for constructing the same. An example method includes creating an enclosed region for metal deposition defined by the gates of the adjacent transistors and an opposing pair of dielectric walls adjacent to source regions and drain regions of the adjacent transistors. The method further includes depositing a metal layer within the enclosed region. The metal contacts thus formed are self-aligned to the enclosed regions.
摘要:
A field effect transistor (FET) includes a drain formed of a first material, a source formed of the first material, a channel formed by a nanostructure coupling the source to the drain, and a gate formed between the source and the drain and surrounding the nanostructure.
摘要:
Borderless self-aligned metal contacts to high density complementary metal oxide semiconductor (CMOS) circuits and methods for constructing the same. An example method includes creating an enclosed region for metal deposition defined by the gates of the adjacent transistors and an opposing pair of dielectric walls adjacent to source regions and drain regions of the adjacent transistors. The method further includes depositing a metal layer within the enclosed region. The metal contacts thus formed are self-aligned to the enclosed regions.
摘要:
A miniaturized electro-mechanical switch includes a moveable portion having a contact configured to make, when the switch is actuated, an electrical connection between two stationary points. At least the contact is composed of a fully silicided material. A structure includes a silicon layer formed over an insulator layer and a micromechanical switch formed at least partially within the silicon layer. The micromechanical switch has a conductive structure, and where at least electrically contacting portions of the conductive structure are comprised of fully silicided material.
摘要:
A method is disclosed to fabricate an electro-mechanical device such as a MEMS or NEMS switch. The method includes providing a silicon layer disposed over an insulating layer that is disposed on a silicon substrate; releasing a portion of the silicon layer from the insulating layer so that it is at least partially suspended over a cavity in the insulating layer; depositing a metal (e.g., Pt) on at least one surface of at least the released portion of the silicon layer and, using a thermal process, fully siliciding at least the released portion of the silicon layer using the deposited metal. The method eliminates silicide-induced stress to the released Si member, as the entire Si member is silicided. Furthermore no conventional wet chemical etch is used after forming the fully silicided material thereby reducing a possibility of causing corrosion of the silicide and an increase in stiction.
摘要:
A hydrofluorocarbon gas is employed as a polymer deposition gas in an anisotropic etch process employing an alternation of an etchant gas and the polymer deposition gas to etch a deep trench in a semiconductor substrate. The hydrofluorocarbon gas can generate a thick carbon-rich and hydrogen-containing polymer on sidewalls of a trench at a thickness on par with the thickness of the polymer on a top surface of the semiconductor substrate. The thick carbon-rich and hydrogen-containing polymer protects sidewalls of a trench, thereby minimizing an undercut below a hard mask without degradation of the overall rate. In some embodiments, an improvement in the overall etch rate can be achieved.
摘要:
A method of manufacturing an electrode is provided that includes providing a pillar of a first phase change material atop a conductive structure of a dielectric layer; or the inverted structure; forming an insulating material atop dielectric layer and adjacent the pillar, wherein an upper surface of the first insulating material is coplanar with an upper surface of the pillar; recessing the upper surface of the pillar below the upper surface of the insulating material to provide a recessed cavity; and forming a second phase change material atop the recessed cavity and the upper surface of the insulating material, wherein the second phase change material has a greater phase resistivity than the first phase change material.
摘要:
A method of forming bit line aligned to a phase change material that includes forming a pedestal of a sacrificial material on a portion of a lower electrode and forming at least one dielectric material adjacent to the sacrificial material, wherein the at least one dielectric material has an upper surface substantially coplanar with an upper surface of the pedestal of the sacrificial material. The pedestal of the sacrificial material is removed selective to the at least one dielectric material and the lower electrode to provide an opening to an exposed surface of the lower electrode. A phase change material is formed on the exposed surface of the lower electrode, and the opening is filled with a conductive fill material. A self-aligned etch back process is also provided.