摘要:
A method and apparatus increase the temperature of a fuel cell via reactant starvation at one or both electrodes. Reactant starvation at an electrode results in increased internal heat generation under load. Starvation conditions can be prolonged or intermittent and can be obtained, for example, by suitably reducing the supply rate of a reactant or by operating the fuel cell at sufficiently high current density so as to consume reactant faster than it is supplied. The method can allow for some generation of useful power by the fuel cell during start-up. The method is particularly suitable for starting up a solid polymer electrolyte fuel cell from temperatures below 0° C.
摘要:
A method and apparatus increase the temperature of a fuel cell via reactant starvation at one or both electrodes. Reactant starvation at an electrode results in an increased overvoltage at the electrode and hence increased internal heat generation under load. Starvation conditions can be prolonged or intermittent and can be obtained, for example, by suitably reducing the supply rate of a reactant or by operating the fuel cell at sufficiently high current density so as to consume reactant faster than it is supplied. The method can allow for some generation of useful power by the fuel cell during start-up. The method is particularly suitable for starting up a solid polymer electrolyte fuel cell from temperatures below 0° C.
摘要:
An electrochemical fuel cell is operated with periodic reactant starvation at either or both electrodes. Periodic reactant starvation conditions cause a change in the potential of the starved electrode and may result in the removal of electrocatalyst poisons and in improved fuel cell performance. This technique may have other beneficial effects at the electrodes, including performance improvements due to water management effects or localized heating effects at the starved electrode. In a preferred method, while successive localized portions of a fuel cell electrode are periodically reactant starved, the remainder of the fuel cell electrode remains electrochemically active and saturated with reactant such that the fuel cell is able to continue to generate power.
摘要:
An electric power generation system has elements that improve the cold start capability and freeze tolerance of a constituent fuel cell stack cooperate to reduce the amount of water remaining within the passages of the stack. The system includes a purge system that is connectable to the oxidant supply, fuel supply and/or coolant passages upstream of the stack. When the stack is shut down, the stack is disconnected from an external circuit, and purge fluid is transmitted by the purge system through the stack before the stack falls below the freezing point of water. In systems where fuel and/or oxidant streams are humidified prior to entry into the stack, a humidifier bypass system may be provided in place of the purge system. The humidifier bypass system transmits reactant fluid to the stack in fluid isolation from the humidifier, so that the inlet reactant streams are unhumidified.
摘要:
Apparatus and methods of ceasing operation of an electric power generating system improve the cold starting capability of the system. The system comprises a fuel cell stack connectable to an external circuit for supplying power to the external circuit. The stack comprises at least one solid polymer fuel cell, and the system further comprises a fuel passage for directing a fuel stream through the stack and an oxidant passage for directing an oxidant stream through the stack, a sensor assembly connected to the stack for monitoring a parameter indicative of stack performance, a controller for controlling at least one stack operating parameter, and a control system communicative with the sensor assembly and stack operating parameter controller. The method comprises adjusting at least one stack operating parameter to cause the stack to operate under a drying condition that causes a net outflux of water from the stack, operating the stack under the drying condition until the water content in the stack has been reduced, and interrupting supply of power from the stack to the external circuit.
摘要:
The electrochemical performance of an ion-exchange membrane in a fuel cell system may be improved by impregnating therein a perfluoroamine. The amine may be primary, secondary or tertiary. Further, the amine is preferably water insoluble or only slightly water soluble. For example, the amine may be perfluorotriamylamine or perfluorotributylamine. Use of such a membrane system within a fuel cell may allow high or low temperature operation (i.e. at temperatures greater than 100° C. or less than 0° C.) as well as operation at low relative humidity.
摘要:
A method of controlling the temperature within an electrochemical fuel cell stack comprises introducing a reactant fluid stream comprising both a heat transfer liquid and a reactant into a fuel cell assembly such that the reactant fluid stream contacts an electrode. The heat transfer liquid is other than water. Preferably, the method further comprises recirculating heat transfer liquid which is in the reactant exhaust stream, typically via a heat exchanger, and re-introducing it into the fuel cell assembly in the reactant fluid stream. The recirculated heat transfer liquid may be directed to a reservoir which in turn supplies heat transfer liquid to the reactant fluid stream as it is needed. In a further embodiment, the method may comprise using the heat transfer liquid to heat a fuel cell stack to a desired operating temperature rather than cooling the stack.
摘要:
An integrated fuel cell and pressure swing adsorption system is disclosed for operating a solid polymer fuel cell on an enriched reactant stream. The fuel and/or oxidant streams may be enriched; for example, air and reformate streams may be oxygen and hydrogen enriched, respectively. The system may advantageously combine periodic reversal of the reactant flows through the fuel cell with use of an integrated pressure swing adsorption system.
摘要:
A method and apparatus is provided for operating an electrochemical fuel cell with periodic momentary fuel starvation at the anode. It is believed that such momentary periodic fuel starvation conditions cause the anode potential to increase, resulting in the oxidation and removal of electrocatalyst poisons from the anode electrocatalyst and improved fuel cell performance. In a preferred method, while successive localized portions of the fuel cell anode are momentarily periodically fuel starved, the remainder of the fuel cell anode remains electrochemically active and saturated with fuel such that the fuel cell is continually available to generate power.
摘要:
The activity of catalysts used in promoting the oxidation of certain oxidizable species in fluids can be enhanced via electrochemical methods, e.g., NEMCA. In particular, the activity of catalysts used in the selective oxidation of carbon monoxide can be enhanced. A purification system that exploits this effect is useful in purifying reformate supplied as fuel to a solid polymer electrolyte fuel cell stack. The purification system comprises an electrolytic cell with fluid diffusion electrodes. The activity of catalyst incorporated in the cell anode is enhanced.