摘要:
This invention relates to novel methods for affecting, and/or directing various crystal formation, structure formation or phase formation/phase change reaction pathways or systems by exposing one or more components in a holoreaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a crystallization reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other (or all) crystallization reaction system participants being introduced into the reaction vessel.
摘要:
This invention relates to novel methods for affecting, controlling and/or directing various crystal formation, structure formation or phase formation/phase change reaction pathways or systems by exposing one or more components in a holoreaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a crystallization reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other (or all) crystallization reaction system participants being introduced into the reaction vessel.
摘要:
This invention relates to novel methods for affecting, controlling and/or directing various reactions and/or reaction pathways or systems by exposing one or more components in a fuel cell reaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a fuel cell reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other reaction system participants being introduced into the reaction vessel.
摘要:
The present invention relates generally to the storage and/or retrieval of information on magnetic storage media by using one or more novel approaches alone or in combination. These novel approaches are capable of using at least one code which may comprise more than two values (i.e., more than a “0” and a “1”). A series of approaches applies generally to existing electric and/or magnetic storage/retrieval systems (e.g., magnetic, magneto-optic, etc.) as well as other novel electrical/magnetic systems. Each series of approaches is capable of storing information in one or more codes, wherein such approaches permit, if desired, the use of at least one higher order code which is different from the traditional binary code of “0's” and “1's” currently utilized for the storage of digital information. Said at least one higher order code may comprise three or more optical and/or magnetic values or bits that are used to represent, for example, ASCII or Unicode characters that are currently represented predominately by the traditional binary code. This higher order code may also be an analog or analog-like code.
摘要:
This invention relates to novel methods for affecting, controlling and/or directing various reactions and/or reaction pathways or systems by exposing one or more components in a fuel cell reaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a fuel cell reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other reaction system participants being introduced into the reaction vessel.
摘要:
The present invention relates generally to the storage of information on magnetic and/or optical storage media by using one or more novel approaches alone or in combination. These novel approaches are capable of using at least one code which may comprise more than two values (i.e., more than a “0” and a “1”). A first series of approaches for the storage of information applies generally to optical storage/retrieval systems (e.g., CD's, DVD's, etc.); while a second series of approaches applies generally to electric and/or magnetic storage/retrieval systems (e.g., magnetic, magneto-optic, etc.). Each series of approaches is capable of storing information in one or more codes, wherein such approaches permit, if desired, the use of at least one higher order code which is different from the traditional binary code of “0's” and “1's” currently utilized for the storage of digital information. Said at least one higher order code may comprise three or more optical and/or magnetic values or bits that are used to represent, for example, ASCII or Unicode characters that are currently represented predominantly by the traditional binary code. This higher order code may also be an analog or analog-like code.
摘要:
This invention relates to novel methods for affecting, controlling and/or directing various reactions and/or reaction pathways or systems by exposing one or more components in a holoreaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other reaction system participants being introduced into the reaction vessel.The techniques of the present invention are applicable to inorganic reactions, organic reactions, biologic reactions and/or phase or structure change reactions. The invention specifically discloses different means for achieving the control of energy dynamics (e.g., matching or non-matching) between, for example, applied energy and matter (e.g., solids, liquids, gases, plasmas and/or combinations or portions thereof), to achieve (or to prevent) and/or increase energy transfer to, for example, at least one participant (or at least one conditionable participant) in a holoreaction system by taking into account various energy considerations in the holoreaction system. The invention also discloses an approach for designing or determining appropriate physical catalyst(s) to be used in a holoreaction system.The techniques of the present invention use targeted spectral energies to control transformation of matter, and/or reaction system dynamics, such as chemical reactions, phase changes, and material properties.
摘要:
The invention relates to novel methods for affecting, controlling and/or directing various reactions and/or reaction pathways or systems by exposing one or more components in a holoreaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other reaction system participants being introduced into the reaction vessel.
摘要:
The present invention relates generally to the storage of information on magnetic and/or optical storage media by using one or more novel approaches alone or in combination. These novel approaches are capable of using at least one code which may comprise more than two values (i.e., more than a “0” and a “1”). A first series of approaches for the storage of information applies generally to optical storage/retrieval systems (e.g., CD's, DVD's, etc.); while a second series of approaches applies generally to electric and/or magnetic storage/retrieval systems (e.g., magnetic, magneto-optic, etc.). Each series of approaches is capable of storing information in one or more codes, wherein such approaches permit, if desired, the use of at least one higher order code which is different from the traditional binary code of “0's” and “1's” currently utilized for the storage of digital information. Said at least one higher order code may comprise three or more optical and/or magnetic values or bits that are used to represent, for example, ASCII or Unicode characters that are currently represented predominantly by the traditional binary code. This higher order code may also be an analog or analog-like code.
摘要:
This invention relates to novel methods for affecting, controlling and/or directing various reactions and/or reaction pathways or systems by exposing one or more components in a fuel cell reaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a fuel cell reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other reaction system participants being introduced into the reaction vessel.