摘要:
A crystalline nanowire and method of making a crystalline nanowire are disclosed. The method includes dissolving a first nitrate salt and a second nitrate salt in an acrylic acid aqueous solution. An initiator is added to the solution, which is then heated to form polyacrylatyes. The polyacrylates are dried and calcined. The nanowires show high reversible capacity, enhanced cycleability, and promising rate capability for a battery or capacitor.
摘要:
A crystalline nanowire and method of making a crystalline nanowire are disclosed. The method includes dissolving a first nitrate salt and a second nitrate salt in an acrylic acid aqueous solution. An initiator is added to the solution, which is then heated to form polyacrylatyes. The polyacrylates are dried and calcined. The nanowires show high reversible capacity, enhanced cycleability, and promising rate capability for a battery or capacitor.
摘要:
A lithium ion battery having an anode, an electrolyte, and a cathode comprising nano-structured carbon in electrical communication with LiFePO4. The cathode of the lithium ion battery of the present invention has sufficient structural stability to maintain at least 90-99 percent of the specific capacity of the cathode over 500 charge/discharge cycles.
摘要:
Redox flow battery systems having a supporting solution that contains Cl− ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42− and Cl− ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl− ions or a mixture of SO42− and Cl− ions.
摘要:
Introducing multiple redox reactions with a suitable voltage range can improve the energy density of redox flow battery (RFB) systems. One example includes RFB systems utilizing multiple redox pairs in the positive half cell, the negative half cell, or in both. Such RFB systems can have a negative electrolyte, a positive electrolyte, and a membrane between the negative electrolyte and the positive electrolyte, in which at least two electrochemically active elements exist in the negative electrolyte, the positive electrolyte, or both.
摘要:
Introducing multiple redox reactions with a suitable voltage range can improve the energy density of redox flow battery (RFB) systems. One example includes RFB systems utilizing multiple redox pairs in the positive half cell, the negative half cell, or in both. Such RFB systems can have a negative electrolyte, a positive electrolyte, and a membrane between the negative electrolyte and the positive electrolyte, in which at least two electrochemically active elements exist in the negative electrolyte, the positive electrolyte, or both.
摘要:
Redox flow battery systems having a supporting solution that contains Cl− ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42− and Cl− ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl− ions or a mixture of SO42− and Cl− ions.
摘要:
A redox flow battery having a supporting solution that includes Cl− anions is characterized by an anolyte having V2+ and V3+ in the supporting solution, a catholyte having Fe2+ and Fe3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO42− and Cl− anions.
摘要:
A redox flow battery having a supporting solution that includes Cl− anions is characterized by an anolyte having V2+ and V3+ in the supporting solution, a catholyte having Fe2+ and Fe3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO42− and Cl− anions.
摘要:
Redox flow battery systems having a supporting solution that contains Cl” ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42− and Cl− ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl− ions or a mixture of SO42− and Cl− ions.