摘要:
Catalyst systems and methods of forming the catalyst systems are described herein. The methods generally include contacting a support material with an activator to form a support composition, contacting a component with at least a portion of an aluminum containing compound including TIBAl, wherein the component is selected from the support composition, the transition metal catalyst compound and combinations thereof and contacting the support composition with a transition metal catalyst compound to form a supported catalyst system.
摘要:
Catalyst systems and methods of forming the catalyst systems are described herein. The methods generally include contacting a support material with an activator to form a support composition, contacting a component with at least a portion of an aluminum containing compound including TIBAl, wherein the component is selected from the support composition, the transition metal catalyst compound and combinations thereof and contacting the support composition with a transition metal catalyst compound to form a supported catalyst system.
摘要:
Catalyst systems and methods of forming the catalyst systems are described herein. The methods generally include contacting a support material with an activator to form a support composition, contacting a component with at least a portion of an aluminum containing compound including TIBAl, wherein the component is selected from the support composition, the transition metal catalyst compound and combinations thereof and contacting the support composition with a transition metal catalyst compound to form a supported catalyst system.
摘要:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
摘要:
Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4. The multi-component catalyst system further includes a second catalyst component generally represented by the formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4 and wherein the second catalyst component exhibits a higher ethylene response than the first catalyst component.
摘要:
Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4. The multi-component catalyst system further includes a second catalyst component generally represented by the formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4 and wherein the second catalyst component exhibits a higher ethylene response than the first catalyst component.
摘要:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
摘要:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
摘要:
Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4. The multi-component catalyst system further includes a second catalyst component generally represented by the formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4 and wherein the second catalyst component exhibits a higher ethylene response than the first catalyst component.
摘要:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.