摘要:
Diversity techniques are commonly used in wireless communications to combat multi-path fading. Recent interests in ultra-wideband technology focus on multi-band OFDM systems that can explore the high diversity due to the independent frequency bands. To achieve full diversity with high data rate, a system (800), apparatus (500) and method that uses coded modulation with spreading rotation of transmitted signals. A 2×2 integer rotation matrix for QAM signals, 3×3 and 4×4 integer rotation matrices for QAM signals are provided. Compared with the non-regular QAM shape for real rotation matrices, each of these integer rotation matrices makes the regular QAM shape after rotation. The systematic design of these spreading matrices can be used to simplify the receiver structure such as simplified ML, MMSE and ZF, and then reduce their decoding complexity. Further, the present invention achieves cooperative diversity not only from distributed users but also from the signal space diversity of each user. An embodiment is provided for a cooperative system (100) in which different rows of integer rotation matrices are used by a source and relays as a modulation scheme to increase cooperative diversity.
摘要:
The present invention provides a system (400), device (200, 300), and method (200) for a spatial multiplexing (SMX) transmission scheme combined with symbol spreading and rotation using a pre-determined matrix R, which can greatly improve system performance without requiring additional bandwidth or power consumption under fast Rayleigh flat fading channels or high frequency-selective channels in UWB systems. Because of the lattice-based structure, sphere decoding is employed to reduce the complexity of ML decoding while maintaining the near ML performance. On the other hand, ZF and MMSE receivers can also be used due to the systematic structure at the transmitter.
摘要:
Diversity techniques are commonly used in wireless communications to combat multipath fading. Recent interests in ultra-wideband technology focus on multi-band OFDM systems that can explore the high diversity due to the independent frequency bands. To achieve full diversity with high data rate, a system, apparatus and method that uses coded modulation with spreading rotation of transmitted signals. A 2×2 integer rotation matrix for QAM signals, 3×3 and 4×4 integer rotation matrices for QAM signals are provided. Compared with the non-regular QAM shape for real rotation matrices, each of these integer rotation matrices makes the regular QAM shape after rotation.
摘要:
The present invention provides a system (400), device (200, 300), and method (200) for a spatial multiplexing (SMX) transmission scheme combined with symbol spreading and rotation using a pre-determined matrix R, which can greatly improve system performance without requiring additional bandwidth or power consumption under fast Rayleigh flat fading channels or high frequency-selective channels in UWB systems. Because of the lattice-based structure, sphere decoding is employed to reduce the complexity of ML decoding while maintaining the near ML performance. On the other hand, ZF and MMSE receivers can also be used due to the systematic structure at the transmitter.
摘要:
The present invention provides a system (600), device (500) and method (400) for automatic partner selection in an existing Cooperative MAC (CMAC) protocol, which uses the Ready-to-Send (RTS), Clear-to-Send (CTS) and Partner-Clear-to-Send (PCTS) handshaking to establish cooperation. The present invention enables a “best” partner/relay (500.R.k) who is also willing to cooperate to relay information to a destination (500.D.J) for the transmitting device (i.e., the source), without the source (500.S.i) making a decision on partner selection. That is, the present invention provides a new mechanism by which the best partner/relay (500.R.k) that is also willing to cooperate will “step in” automatically without the source's involvement in selection of the partner/relay (500.R.k). This mechanism is contention-based and the partner is “selected” using local information only in a fully distributed manner.
摘要:
The present invention provides a system (600), device (500) and method (400) for automatic partner selection in an existing Cooperative MAC (CMAC) protocol, which uses the Ready-to-Send (RTS), Clear-to-Send (CTS) and Partner-Clear-to-Send (PCTS) handshaking to establish cooperation. The present invention enables a “best” partner/relay (500.R.k) who is also willing to cooperate to relay information to a destination (500.D.J) for the transmitting device (i.e., the source), without the source (500.S.i) making a decision on partner selection. That is, the present invention provides a new mechanism by which the best partner/relay (500.R.k) that is also willing to cooperate will “step in” automatically without the source's involvement in selection of the partner/relay (500.R.k). This mechanism is contention-based and the partner is “selected” using local information only in a fully distributed manner.
摘要:
The invention discloses an adjusting structure and a stand for photographic apparatus. The adjusting structure includes a first adjusting rod, a first connecting member, a second connecting member, a second adjusting rod, a first locking member and a supporting member. The first connecting member is fixedly connected with the first adjusting rod, the second connecting member is rotationally connected with the first connecting member and is provided with a first mounting hole, wherein the second connecting member can be rotated relative to the first connecting member to adjust an included angle with the first connecting member, the second adjusting rod is penetrated through the first mounting hole and movablely connected with the first adjusting rod, and can be moved relative to the first adjusting rod along a straight direction.
摘要:
Provided herein is a method to printed electronics, and more particularly related to printed electronics on flexible, porous substrates. The method includes applying a coating compound comprising poly (4-vinylpyridine) (P4VP) and SU-8 dissolved in an organic alcohol solution to one or more surface of a flexible, porous substrate, curing the porous substrate at a temperature of at least 130° C. such that the porous substrate is coated with a layer of said coating compound, printing a jet of a transition metal salt catalyst solution onto one or more printing sides of the flexible, porous substrate to deposit a transition metal salt catalyst onto the one or more printing sides, and submerging the substrate in an electroless metal deposition solution to deposit the metal on the flexible, porous substrate, wherein the deposited metal induces the formation of one or more three-dimensional metal-fiber conductive structures within the flexible, porous substrate.
摘要:
A method and apparatus for within-wafer profile localized tuning is disclosed. In one aspect, the method includes providing a wafer attached to a rotating vacuum stage front side up, the wafer including a surface film with an incoming film thickness profile, providing a pad attached to a rotating head front side down, the head configured to sweep along a path, computing a film thickness removal amount based upon the incoming film thickness profile, and removing at least a portion of the surface film of the wafer based on the computed film thickness removal amount via a plurality of steps.
摘要:
A method and apparatus for within-wafer profile localized tuning is disclosed. In one aspect, the method includes providing a wafer attached to a rotating vacuum stage front side up, the wafer including a surface film with an incoming film thickness profile, providing a pad attached to a rotating head front side down, the head configured to sweep along a path, computing a film thickness removal amount based upon the incoming film thickness profile, and removing at least a portion of the surface film of the wafer based on the computed film thickness removal amount via a plurality of steps.