摘要:
A semiconductor device includes a buried well, first and second active regions, an isolation layer, and a low resistance region. The buried well is disposed on a substrate and has impurity ions of a first conductivity type. The first and second active regions are disposed on the buried well and each have impurity ions of a second conductivity type, which is different from the first conductivity type. The isolation layer is disposed between the first and second active regions. The low resistance region is disposed between the isolation layer and the substrate and has impurity ions of the second conductivity type. The concentration of impurity ions in the low resistance region is greater than the concentration of the impurity ions in each of the first and second active regions.
摘要:
A semiconductor device includes a buried well, first and second active regions, an isolation layer, and a low resistance region. The buried well is disposed on a substrate and has impurity ions of a first conductivity type. The first and second active regions are disposed on the buried well and each have impurity ions of a second conductivity type, which is different from the first conductivity type. The isolation layer is disposed between the first and second active regions. The low resistance region is disposed between the isolation layer and the substrate and has impurity ions of the second conductivity type. The concentration of impurity ions in the low resistance region is greater than the concentration of the impurity ions in each of the first and second active regions.
摘要:
A semiconductor device including a buried cell array transistor and an electronic device including the same are provided. The device includes a field region in a substrate and the filed region defines an active region. A first source/drain region and a second source/drain region are in the active region. A gate trench is between the first and second source/drain regions, and in the active region and the field region. A gate structure is within the gate trench. The gate structure includes a gate electrode, an insulating gate capping pattern on the gate electrode, a gate dielectric between the gate electrode and the active region, and an insulating metal-containing material layer between the insulating gate capping pattern and the active region.
摘要:
A semiconductor device including a buried cell array transistor and an electronic device including the same are provided. The device includes a field region in a substrate and the filed region defines an active region. A first source/drain region and a second source/drain region are in the active region. A gate trench is between the first and second source/drain regions, and in the active region and the field region. A gate structure is within the gate trench. The gate structure includes a gate electrode, an insulating gate capping pattern on the gate electrode, a gate dielectric between the gate electrode and the active region, and an insulating metal-containing material layer between the insulating gate capping pattern and the active region.
摘要:
In a method of manufacturing a transistor, a gate structure is formed on a substrate. First impurities are implanted into the substrate to form an impurity region at an upper portion of the substrate adjacent to the gate structure. An epitaxial layer is formed on the impurity region. An insulation layer having an opening partially exposing the epitaxial layer is formed on the substrate. Second impurities are implanted into a portion of the epitaxial layer exposed by the opening.
摘要:
A semiconductor device includes an active region defined in a substrate, the active region having a trench extending below a surface of the substrate; an impurity region provided along a bottom surface and a lower sidewall of the trench, wherein an upper portion of the impurity region is spaced apart from the surface of the substrate and an upper portion of the trench; a gate insulating layer provided along an inner surface of the trench; and a gate electrode provided in the trench.
摘要:
A recessed channel transistor, a semiconductor device including a transistor and methods of manufacturing the same are provided, the recessed channel transistor includes a gate structure, a second impurity region and a first impurity region. The gate structure may be formed on a substrate and filling a recess. The first impurity region, including first impurities, may be formed at a first upper portion of the substrate adjacent to the gate structure. The second impurity region, including second impurities, may be formed at a second upper portion of the substrate contacting the gate structure. The first impurity region may surround the second impurity region. The first impurities have a conductive type different from that of the second impurities.
摘要:
In a method of manufacturing a transistor, a gate structure is formed on a substrate. First impurities are implanted into the substrate to form an impurity region at an upper portion of the substrate adjacent to the gate structure. An epitaxial layer is formed on the impurity region. An insulation layer having an opening partially exposing the epitaxial layer is formed on the substrate. Second impurities are implanted into a portion of the epitaxial layer exposed by the opening.
摘要:
A recessed channel transistor, a semiconductor device including a transistor and methods of manufacturing the same are provided, the recessed channel transistor includes a gate structure, a second impurity region and a first impurity region. The gate structure may be formed on a substrate and filling a recess. The first impurity region, including first impurities, may be formed at a first upper portion of the substrate adjacent to the gate structure. The second impurity region, including second impurities, may be formed at a second upper portion of the substrate contacting the gate structure. The first impurity region may surround the second impurity region. The first impurities have a conductive type different from that of the second impurities.
摘要:
A method of fabricating a capacitor of a semiconductor memory device includes the steps of: forming an interlevel insulating layer on a semiconductor substrate on which the capacitor will be formed, selectively etching a portion of the interlevel insulating layer placed on a capacitor forming portion to form a capacitor node hole, and forming a first temporary layer on the interlevel insulating layer, including a portion of the interlevel insulating layer in which the capacitor node hole is formed; forming a contact hole beneath the capacitor node hole in a capacitor contact portion; forming a conductive layer on the first temporary layer to bury the contact hole and the capacitor node hole, and then forming a second temporary layer on the conductive layer; etching back the second temporary layer through anisotropic etching process to expose the conductive layer, and to simultaneously form a temporary pillar layer inside the capacitor node hole, the temporary pillar layer being substantially surrounded by the conductive layer; removing a portion of the conductive layer placed on a portion other than the capacitor forming portion, to form a first capacitor electrode and to expose at least a portion of the first temporary layer; and removing remaining portions of the first and second temporary layers to expose an upper portion of the first capacitor electrode, forming a dielectric layer on a surface of the first capacitor electrode, and forming a second capacitor electrode on a surface of the dielectric layer.