摘要:
The present invention provides an electrode binder for a polymer electrolyte membrane fuel cell which includes a hydrocarbon-based polymer and a water-soluble polymer acting as a porogen, a porous hydrocarbon-based electrode catalyst layer including the electrode binder, and a method of manufacturing the same. Because of the use of the porogen, the pore size and porosity of the hydrocarbon-based binder catalyst layer are optimized, and bondability of a hydrocarbon-based membrane electrode assembly is enhanced. The present invention also features a fuel cell manufactured using the porogen.
摘要:
The present invention relates to a polymer blend electrolyte membrane comprising an inorganic polymer having polydimethylsiloxane as a main chain, which has a pore structure at both ends formed by condensation reaction between 3-aminopropyltriethoxysilane and tetraethylorthosilicate, wherein phosphoric acid is chemically linked to an amino group of the pore structure; and a proton-conducting polymer having a cation exchange group at the side chain thereof, as well as a manufacturing method thereof. Generally, proton-conducting electrolyte membranes have significantly reduced ion conductivity at high temperatures. However, proton-conducting electrolyte membranes have advantages in terms of efficiency and cost, and thus it is needed to develop an electrolyte membrane, which has excellent ion conductivity even at high temperature. Accordingly, the present invention aims to provide a polymer blend electrolyte membrane for use at high temperature and a manufacturing method thereof.
摘要:
The present invention relates to a polymer blend electrolyte membrane comprising an inorganic polymer having polydimethylsiloxane as a main chain, which has a pore structure at both ends formed by condensation reaction between 3-aminopropyltriethoxysilane and tetraethylorthosilicate, wherein phosphoric acid is chemically linked to an amino group of the pore structure; and a proton-conducting polymer having a cation exchange group at the side chain thereof, as well as a manufacturing method thereof. Generally, proton-conducting electrolyte membranes have significantly reduced ion conductivity at high temperatures. However, proton-conducting electrolyte membranes have advantages in terms of efficiency and cost, and thus it is needed to develop an electrolyte membrane, which has excellent ion conductivity even at high temperature. Accordingly, the present invention aims to provide a polymer blend electrolyte membrane for use at high temperature and a manufacturing method thereof.
摘要:
The present invention relates to a process for preparing electrode catalyst materials for a polymer electrolyte membrane fuel cell (PEMFC), and particularly to a high-performance platinum-non-platinum mixed electrode catalyst (Pt—RuOs/C) having a physically mixed structure of RuOs alloy and platinum materials, which is prepared by adding a small amount of platinum (Pt) to RuOs alloy materials highly dispersed on a carbon support, where the amount of platinum used is drastically reduced as compared to the conventional platinum materials, thus lowering the manufacturing cost.
摘要:
The present invention provides a method for manufacturing a membrane-electrode assembly (MEA) which is a core element of a polymer electrolyte membrane fuel cell for a vehicle and an electrode therefor. The method for manufacturing an MEA of the present invention is implemented to provide a highly-concentrated catalyst slurry which is uniformly dispersed, compared to conventional catalyst slurries, by a catalyst slurry manufacturing process including a vacuum defoaming process.
摘要:
The present invention relates to a process for preparing a porous graphite carbon with high crystallinity, which comprises the steps of: (a) hydrothermally treating sucrose (i.e. carbon precursor), transitional metal precursor and uniform-sized silica particles at the same time to prepare a polymer; and (b) carbonizing the polymer, which can provide a porous graphite carbon with remarkably improved crystallinity suitable for a catalyst support for a fuel cell.
摘要:
The present invention provides an amphiphilic block copolymer, a method for manufacturing the same, and a fuel cell membrane using the same. According to preferred embodiments, the amphiphilic block copolymer may contain poly(arylene sulfone ether ketone) (PSEK) as a hydrophobic component and poly(sulfonated styrene-co-acrylonitrile) (PSSAN) as a hydrophilic component. According to other preferred embodiments, polymer electrolyte membrane manufactured using the amphiphilic block copolymer has certain advantages in that the hydrogen ion conductivity is not reduced even at a high temperature of more than 100° C. but is rather increased and the thermal and chemical dimensional stability is excellent.
摘要:
The present invention relates to a method and apparatus for preparing a catalyst slurry for fuel cells, in which nano-sized catalyst particles are dispersed uniformly at a high concentration and the adsorption force between the catalyst and ionomer is maximized. The resulting catalyst slurry is suitable for the manufacture of a membrane-electrode assembly (MEA) of a polymer electrolyte (or proton exchange) membrane fuel cell (PEMFC).
摘要:
The present invention provides an amphiphilic block copolymer, a method for manufacturing the same, and a fuel cell membrane using the same. According to preferred embodiments, the amphiphilic block copolymer may contain poly(arylene sulfone ether ketone) (PSEK) as a hydrophobic component and poly(sulfonated styrene-co-acrylonitrile) (PSSAN) as a hydrophilic component. According to other preferred embodiments, polymer electrolyte membrane manufactured using the amphiphilic block copolymer has certain advantages in that the hydrogen ion conductivity is not reduced even at a high temperature of more than 100° C. but is rather increased and the thermal and chemical dimensional stability is excellent.
摘要:
The present invention provides an electrode for a polymer electrolyte membrane fuel cell (PEMFC) and a method for forming a membrane-electrode assembly (MEA) using the same, in which carbon nanofibers are added to a catalyst layer to increase the mechanical strength of the catalyst layer and to maintain the thickness of the catalyst layer after operation for a long time, thus preventing a reduction in physical durability of the fuel cell, and cerium-zirconium oxide (CeZrO4) as a radical inhibitor is added to the catalyst layer, thus preventing a reduction in chemical durability of the fuel cell. As a result, it is possible to physically and chemically increase the performance and durability of the fuel cell membrane-electrode assembly in a robust manner and minimize the reduction in performance after operation for a long time.