摘要:
A display device includes a frame frequency conversion circuit configured to convert a frame frequency of an input display data and a timing control circuit configured to control a first drive circuit and a second drive circuit based on a frame frequency after the conversion. The display device generates at least two display areas on the display panel. The at least two display areas display images at different frame frequencies. The display device further includes a switch unit configured to display an image at the frame frequency before the conversion at one of the at least two display areas and configured to display an image at the frame frequency after the conversion at another one of the at least two display areas. At least one of a boundary position and a size of the at least two display areas varies with time.
摘要:
A display device includes a frame frequency conversion circuit configured to convert a frame frequency of an input display data and a timing control circuit configured to control a first drive circuit and a second drive circuit based on a frame frequency after the conversion. The display device generates at least two display areas on the display panel. The at least two display areas display images at different frame frequencies. The display device further includes a switch unit configured to display an image at the frame frequency before the conversion at one of the at least two display areas and configured to display an image at the frame frequency after the conversion at another one of the at least two display areas. At least one of a boundary position and a size of the at least two display areas varies with time.
摘要:
A resistive element (115) is connected in series to a cathode terminal of an LED light source at a last stage (or an anode terminal of an LED light source at a first stage) of an LED chain (116), and the resistive element (115) is configured to be variable in resistance value in accordance with a variation of voltage drops of the LEDs connected in series so that a resistive element connected to an LED chain having a large voltage drop has a small resistance value while a resistive element connected to an LED chain having a small voltage drop has a large resistance value. With this configuration, the power, which has been wasted otherwise as heat in the backlight driver IC, may be dispersed to the resistive elements.
摘要:
Provided is a display device capable of producing an image of excellent quality with reduced flicker and little reduction in luminance, the display device including: a backlight having light sources such as LED devices arranged two-dimensionally, each of which may be individually modulated in luminance; a moving velocity detection unit VD1 (109) for detecting a moving velocity of an object in a video (for example, moving velocity of a foreground); and a luminance variation control unit (113) for automatically controlling luminance variations of the LED devices for each frame, in accordance with the moving velocity.
摘要:
A resistive element is connected in series to a cathode terminal of an LED light source at a last stage (or an anode terminal of an LED light source at a first stage) of an LED chain, and a resistance value of the resistive element is configured to be variable in resistance value in accordance with a variation of voltage drops of the LEDs connected in series so that a resistance value of a resistive element connected to an LED chain having a large voltage drop has a smaller resistance value then a resistance value of a resistive element connected to an LED chain having a small voltage drop. With this configuration, the power, which has been wasted otherwise as heat in the backlight driver IC, may be dispersed to the resistive elements.
摘要:
Provided is a display device capable of producing an image of excellent quality with reduced flicker and little reduction in luminance, the display device including: a backlight having light sources such as LED devices arranged two-dimensionally, each of which may be individually modulated in luminance; a moving velocity detection unit VD1 (109) for detecting a moving velocity of an object in a video (for example, moving velocity of a foreground); and a luminance variation control unit (113) for automatically controlling luminance variations of the LED devices for each frame, in accordance with the moving velocity.
摘要:
The backlight device includes: a backlight including a plurality of light sources; and a backlight control part. The backlight includes a plurality of divided areas, and light sources disposed in each of the plurality of divided areas are chain-connected. The backlight control part includes at least one backlight control unit for controlling turning on and off of the backlight which includes the plurality of divided areas, with respect to the each divided area. The backlight control unit includes a selection unit for selecting one of divided areas, at least one backlight drive path. The selection unit selects the one of divided areas in a time division manner, and the light sources of the one of divided areas are driven by sharing the at least one backlight drive path in common.
摘要:
Provided is a display device including: a control portion; a display panel including one or more pixel circuits and an image signal line connected to the pixel circuits; and an image signal line driving circuit. The control portion includes a difference acquiring circuit for acquiring difference data between a value of a gray-level potential, which is to be applied to one of the pixel circuits from the image signal line, and a value of a precharge potential based on the gray-level potential. The image signal line driving circuit calculates the precharge potential based on the value of the gray-level potential and the difference data, and supplies the image signal line with the precharge potential and the gray-level potential in sequence.
摘要:
A data line driving section (6) outputs a video signal voltage for each pixel to a data line (DL) for each predetermined period in order. In outputting a video signal voltage for a pixel, the data line driving section (6) outputs a gradation signal voltage having a voltage corresponding to a gradation value of the pixel as the video signal voltage during a second part of the predetermined period, and outputs a correction gradation signal voltage different from the gradation signal voltage as the video signal voltage during a first part of the predetermined period. A control section (4) changes a relationship between the correction gradation signal voltage and the gradation signal voltage based on a combination of the gradation value of the pixel and a gradation value of a pixel preceding the pixel.
摘要:
Provided is a display device including: a control portion; a display panel including one or more pixel circuits and an image signal line connected to the pixel circuits; and an image signal line driving circuit. The control portion includes a difference acquiring circuit for acquiring difference data between a value of a gray-level potential, which is to be applied to one of the pixel circuits from the image signal line, and a value of a precharge potential based on the gray-level potential. The image signal line driving circuit calculates the precharge potential based on the value of the gray-level potential and the difference data, and supplies the image signal line with the precharge potential and the gray-level potential in sequence.