摘要:
The new organic electroluminescent display device has a carrier-transporting layer and/or an organic luminous layer composed of a nematic liquid crystal or a liquid crystal dispersing a carrier-transporting low-molecule therein. When the organic luminous layer is to be bestowed with faculty as a liquid crystal, it is made of a nematic liquid crystal. Both the carrier-transporting layer and the organic luminous layer may be bestowed with faculty as a liquid crystal. Since the liquid crystal is incorporated in the carrier-transporting layer and/or the organic luminous layer, the display device can be driven as a liquid crystal display device in a dark place by charging with a voltage lower than a light emission initiating potential. Of course, it is driven as an electroluminescent display device when it is charged with a voltage higher than the light emission initiating potential. Use of an electroluminescent liquid crystal as a organic luminous layer enables omission of a carrier-transporting layer.
摘要:
The new organic electroluminescent display device has a carrier-transporting layer and/or an organic luminous layer composed of a nematic liquid crystal or a liquid crystal dispersing a carrier-transporting low-molecule therein. When the organic luminous layer is to be bestowed with faculty as a liquid crystal, it is made of a nematic liquid crystal. Both the carrier-transporting layer and the organic luminous layer may be bestowed with faculty as a liquid crystal. Since the liquid crystal is incorporated in the carrier-transporting layer and/or the organic luminous layer, the display device can be driven as a liquid crystal display device in a dark place by charging with a voltage lower than a light emission initiating potential. Of course, it is driven as an electroluminescent display device when it is charged with a voltage higher than the light emission initiating potential. Use of an electroluminescent liquid crystal as a organic luminous layer enables omission of a carrier-transporting layer.
摘要:
The new organic electroluminescent display device has a carrier-transporting layer and/or an organic luminous layer composed of a nematic liquid crystal or a liquid crystal dispersing a carrier-transporting low-molecule therein. When the organic luminous layer is to be bestowed with faculty as a liquid crystal, it is made of a nematic liquid crystal. Both the carrier-transporting layer and the organic luminous layer may be bestowed with faculty as a liquid crystal. Since the liquid crystal is incorporated in the carrier-transporting layer and/or the organic luminous layer, the display device can be driven as a liquid crystal display device in a dark place by charging with a voltage lower than a light emission initiating potential. Of course, it is driven as an electroluminescent display device when it is charged with a voltage higher than the light emission initiating potential. Use of an electroluminescent liquid crystal as a organic luminous layer enables omission of a carrier-transporting layer.
摘要:
The new organic electroluminescent display device has a carrier-transporting layer and/or an organic luminous layer composed of a nematic liquid crystal or a liquid crystal dispersing a carrier-transporting low-molecule therein. When the organic luminous layer is to be bestowed with faculty as a liquid crystal, it is made of a nematic liquid crystal. Both the carrier-transporting layer and the organic luminous layer may be bestowed with faculty as a liquid crystal. Since the liquid crystal is incorporated in the carrier-transporting layer and/or the organic luminous layer, the display device can be driven as a liquid crystal display device in a dark place by charging with a voltage lower than a light emission initiating potential. Of course, it is driven as an electroluminescent display device when it is charged with a voltage higher than the light emission initiating potential. Use of an electroluminescent liquid crystal as a organic luminous layer enables omission of a carrier-transporting layer.
摘要:
Disclosed is an organic electroluminescent device (organic EL device) which is improved in luminous efficiency, fully secure of driving stability, and of a simple configuration. The organic EL device comprises organic layers comprising a hole-transporting layer and a light-emitting layer sandwiched between an anode and a cathode. The light-emitting layer contains a fluorescent light-emitting material and an electron- and/or exciton-blocking layer containing an indolocarbazole derivative represented by general formula (2) is disposed between the hole-transporting layer and the light-emitting layer so as to be adjacent to the light-emitting layer. In general formula (2), ring B is a heterocyclic ring fused to the adjacent rings and represented by formula (1c), Z is an n-valent aromatic hydrocarbon group or aromatic heterocyclic group, and n is 1 or 2.
摘要:
An organic EL panel has a light-emitting part including one or a plurality of organic EL elements over a substrate and having a sealing structure sealing the light-emitting part. The organic EL element includes an organic layer formed on a first electrode, and a second electrode formed on the organic layer. The organic EL panel includes a coating film coating the light-emitting part. A contact object is arranged on an inner surface of the sealing structure. One or a plurality of convex parts is formed on the contact object. The coating film is formed to have a thickness larger than the length of the convex part.
摘要:
Disclosed is an organic electroluminescent device (organic EL device) that is improved in the luminous efficiency, fully secured of the driving stability, and of a simple structure. The organic EL device comprises a light-emitting layer between an anode and a cathode piled one upon another on a substrate and the said light-emitting layer comprises (A) a phosphorescent dopant whose emission peak wavelength is longer than 600 nm and (B) a host material. The host material contains at least two kinds of compounds selected from two or more kinds of derivatives included in (b1) N-substituted indolocarbazole derivatives, (b2) derivatives of 8-hydroxyquinoline aluminum complex, and (b3) bisindolocarbazole derivatives.
摘要:
Disclosed are an aluminum chelate complex capable of stabilizing the degree of vacuum in a film-forming chamber in the vapor deposition step and producing efficiently a high-quality organic EL device which shows excellent reliability and durability in practical use and an organic EL device using the said aluminum chelate complex. The aluminum chelate complex useful as an organic EL material is represented by L1Al(L2)2, contains 0.6 mol % or less of a complex represented by Al(L2)3, and is obtained by reacting an aluminum alkoxide with a quinolinol derivative and then with a phenolic compound and purifying the resulting complex to a high degree. In the formulas, L1 denotes a phenolate ligand and L2 denotes a substituted quinolinolate ligand.
摘要:
An optical device is provided which is capable of emitting light of a predetermined color (mixed color) other than the intrinsic colors of light emitting layers from each pixel, with a simple design, and with a reduced number of drive lines (electrodes) to achieve the predetermined color (mixed color).The optical device 1 includes one or a plurality of self light emitting elements 100, each one of which corresponds to one pixel 10 that includes a pair of electrodes 3 and 8 formed on a substrate 2 and at least a light emitting layer 6 between the electrodes. The light emitting layer 6 includes a first light emitting layer 61 that at least emits light of a first color and a second light emitting layer 62 that emits light of a second color that is different from the first color in each pixel 10. There are a first light emitting region 161 that emits light of the first color and a second light emitting region 162 that emits light of the second color within the same opening 11 of each pixel 10. Preferably, a third light emitting region 163 is further formed within the same opening 11 for emitting light of a color that is a mixture of the first color and the second color.
摘要:
An image display element includes: a front panel; a back panel opposite thereto; a plurality of pixels arranged in a matrix between both the panels; and plural electrodes for controlling the pixels. Both the panels are bonded together with the pixels and the electrodes interposed therebetween, and the electrodes are connected to a driving circuit via metal film wires. Division is performed so as to expose electrode terminals, and a groove part V-shaped in cross section is formed at the divided portion. The metal film wires are formed on the surface of the top of the back panel, and the electrode terminals and the metal film wires are connected by a conductive paste coated along the tilt surfaces forming the groove part.