摘要:
A seal formed between a metal part and a second part that will remain gas tight in high temperature operating environments which experience frequent thermal cycling, which is particularly useful as an insulating joint in solid oxide fuel cells. A first metal part is attached to a reinforcing material. A glass forming material in the positioned in between the first metal part and the second part, and a seal is formed between the first metal part and the second part by heating the glass to a temperature suitable to melt the glass forming materials. The glass encapsulates and bonds at least a portion of the reinforcing material, thereby adding tremendous strength to the overall seal. A ceramic material may be added to the glass forming materials, to assist in forming an insulating barrier between the first metal part and the second part and to regulating the viscosity of the glass during the heating step.
摘要:
Porous ceramic and hybrid ceramic films are useful as low dielectric constant interlayers in semiconductor interconnects. (Hybrid ceramic films are defined as films that contain organic and ceramic molecular components in the structure, as, for example, organosilicates). This invention describes the usefulness of humidity treatments (using specific temperature/humidity treatments as illustrative examples) in increasing mechanical integrity of porous dielectric films with minimal detrimental effect on film porosity or dielectric constant and with no adverse impact on film quality. The efficacy of such treatments is illustrated using surfactant-templated mesoporous silicate films as an example. This invention also describes a specific family of additives to be used with highly pure alkali-metal-free ceramic and hybrid precursors for such dielectric films that will enable better control of the film porosity and quality and lower dielectric constants with the required mechanical integrity. The efficacy of such additives is illustrated using surfactant-templated mesoporous silicate films as a model example. The invention should be broadly applicable to any cross-linked ceramic or hybrid ceramic films (including silicate and organosilicate films, and especially highly porous forms of the films for low-dielectric constant applications). The invention has been found to be particularly effective with surfactant-templated silicate films with nanometer-scale porosity. The invention in either embodiment should also be applicable to evaporation-induced formation of other cross-linked shapes such as fibers and powders.
摘要:
Methods for abatement of antimony-containing, arsenic-containing and/or phosphorous-containing impurities in fuel gas that is derived from a carbonaceous source can include contacting the fuel gas with an absorbent comprising a capture compound. The capture compound has one or more alkali metals, one or more alkaline earth metals, or a combination of one or more alkali and alkaline earth metals. The fuel gas impurities are reacted with the capture compound, which can be used alone or dispersed on the adsorbent, at a temperature greater than or equal to approximately 300° C. to form solid capture products comprising antimony, arsenic, or phosphorous and the alkali or alkaline earth metal.
摘要:
The present invention is a mesoporous silica film having a low dielectric constant and method of making having the steps of combining a surfactant in a silica precursor solution, spin-coating a film from this solution mixture, forming a partially hydroxylated mesoporous film, and dehydroxylating the hydroxylated film to obtain the mesoporous film. It is advantageous that the small polyoxyethylene ether surfactants used in spin-coated films as described in the present invention will result in fine pores smaller on average than about 20 nm. The resulting mesoporous film has a dielectric constant less than 3, which is stable in moist air with a specific humidity. The present invention provides a method for superior control of film thickness and thickness uniformity over a coated wafer, and films with low dielectric constant.