Abstract:
Methods and systems for discovery of defects of interest (DOI) buried within three dimensional semiconductor structures and recipe optimization are described herein. The volume of a semiconductor wafer subject to defect discovery and verification is reduced by storing images associated with a subset of the total depth of the semiconductor structures under measurement. Image patches associated with defect locations at one or more focus planes or focus ranges are recorded. The number of optical modes under consideration is reduced based on any of a comparison of one or more measured wafer level defect signatures and one or more expected wafer level defect signatures, measured defect signal to noise ratio, and defects verified without de-processing. Furthermore, verified defects and recorded images are employed to train a nuisance filter and optimize the measurement recipe. The trained nuisance filter is applied to defect images to select the optimal optical mode for production.
Abstract:
An inspection tool includes a controller that is configured to generate a scan pattern for an electron beam to image areas of interest on the wafer. The scan pattern minimizes dwell time of the electron beam on the surface of the wafer between the areas of interest. At least one stage speed and at least one raster pattern can be selected based on the areas of interest. The controller sends instructions to electron beam optics to direct the electron beam at the areas of interest on the surface of the wafer using the scan pattern.
Abstract:
An inspection tool includes a controller that is configured to generate a scan pattern for an electron beam to image areas of interest on the wafer. The scan pattern minimizes dwell time of the electron beam on the surface of the wafer between the areas of interest. At least one stage speed and at least one raster pattern can be selected based on the areas of interest. The controller sends instructions to electron beam optics to direct the electron beam at the areas of interest on the surface of the wafer using the scan pattern.
Abstract:
A defect detection method includes acquiring a reference image; selecting a target region of the reference image; identifying, based on a matching metric, one or more comparative regions of the reference image corresponding to the target region; acquiring a test image; masking the test image with the target region of the reference image and the one or more comparative regions of the reference image; defining a defect threshold for the target region in the test image based on the one or more comparative regions in the test image; and determining whether the target region of the test image contains a defect based on the defect threshold.
Abstract:
Methods and systems for discovery of defects of interest (DOI) buried within three dimensional semiconductor structures and recipe optimization are described herein. The volume of a semiconductor wafer subject to defect discovery and verification is reduced by storing images associated with a subset of the total depth of the semiconductor structures under measurement. Image patches associated with defect locations at one or more focus planes or focus ranges are recorded. The number of optical modes under consideration is reduced based on any of a comparison of one or more measured wafer level defect signatures and one or more expected wafer level defect signatures, measured defect signal to noise ratio, and defects verified without de-processing. Furthermore, verified defects and recorded images are employed to train a nuisance filter and optimize the measurement recipe. The trained nuisance filter is applied to defect images to select the optimal optical mode for production.
Abstract:
A defect detection method includes acquiring a reference image; selecting a target region of the reference image; identifying, based on a matching metric, one or more comparative regions of the reference image corresponding to the target region; acquiring a test image; masking the test image with the target region of the reference image and the one or more comparative regions of the reference image; defining a defect threshold for the target region in the test image based on the one or more comparative regions in the test image; and determining whether the target region of the test image contains a defect based on the defect threshold.