Abstract:
An image processing system and related method. The system comprises an input interface (IN) configured for receiving an input image. A filter (FIL) of the system filters said input image to obtain a structure image from said input image, said structure image including a range of image values. A range identifier (RID) of the system identifies, based on an image histogram for the structure image, an image value sub-range within said range. The sub-range being associated with a region of interest. The system output through an output interface (OUT) a specification for said image value sub-range. In addition or instead, a mask image for the region of interest or for region or low information is output.
Abstract:
Soft body tissue, such as a female breast, is imaged using X-ray projection techniques and optical tomography techniques. First image data for a first image of a breast (17) are acquired by X-ray projection using an X-ray source (3) and an X-ray detector (5). Second image data for a second image are acquired using optical tomography equipment comprising a light source (9) and a light detector (11). From the first image data, estimated bulk optical properties of the breast (17) are be derived. Based on such estimated bulk optical properties, an optical tomography image is reconstructed from the second image data with high image quality. Performing mammography acquisition at different compression states of the breast (17) improves patient comfort. Mammograms are acquired at two different compression states wherein a first compression state is adapted to provide high image resolution. At a second compression state, another mammogram may be acquired together with an optical tomography image. The two mammograms are used for image registration thereby possibly providing information for a deformation transform. Additional information on tissue composition within the breast is received by acquiring the first and second mammogram at different X-ray settings.
Abstract:
The present invention relates to the presentation of image information of an object. In order to provide complex image information in a more effective manner, it is proposed to: a) provide (110) 3D volume data (112) of an object; b) identify (114) candidate findings (116) located in the 3D volume data, wherein spatial position information of the candidate findings is assigned to the respective identified candidate finding; c) generate (118) a plurality of tagged slice images (120) of the 3D volume data, wherein each tagged slice image relates to a respective portion of the 3D volume data, and wherein the tagged slice images comprise those candidate findings identified in the respective portion and a tag with the spatial information of the respective candidate finding within the 3D volume; d) compute (122) a synthetic 2D projection (124) by a forward projection of at least a portion of at least a number of the plurality of tagged slice images, wherein the synthetic 2D projection comprises a projection of the candidate findings, and wherein the spatial position information is assigned to the projection of the candidate finding; and e) present (126) the synthetic 2D projection as a synthetic viewing image (128) to a user, wherein the candidate findings are selectable elements within the synthetic viewing image.
Abstract:
The present invention relates to lung measurement. In order to provide enhanced information about a patient that facilitates further assessment steps, 2D X-ray image data of a patient's chest is provided, and the image data is segmented to identify lung structures to provide segmented image data separated from un-segmented areas. Further, spatial lung volume information is extracted from the image data using the segmented image data derived from the image data. Still further, lungs symmetry information is determined using the extracted spatial lung volume information. Finally, the lungs symmetry information is provided to a user. For example, a 2D X-ray image data of a patient's chest is provided (84) and a lungs mask image is formed (86) after the step of segmenting the input image data. Then, the lungs mask image is used to define areas, within which a predetermined adaptation is applied (88) to the original 2D X-ray image data producing a thorax mask image. Next, left and right images are provided (90) showing the left and the right spatial lungs volume information of the regions defined originally by the lungs mask image. Finally, based on the spatial lungs volume information, lungs symmetry information or total lung volumes may be calculated and provided (92).
Abstract:
A method and device (1) for imaging soft body tissue such as a female breast is proposed. X-ray projection techniques and optical tomography techniques are combined. First image data for a first image of a breast (17) may be acquired by X-ray projection using an X-ray source (3) and an X-ray detector (5). Second image data for a second image may be acquired using optical tomography equipment comprising a light source (9) and a light detector (11). From the first image data, estimated bulk optical properties of the breast (17) are be derived. Based on such estimated bulk optical properties, an optical tomography image is reconstructed from the second image data with high image quality. Performing mammography acquisition at different compression states of the breast (17) may improve patient comfort. Mammograms may be acquired at two different compression states wherein a first compression state is adapted to provide high image resolution. At a second compression state, another mammogram may be acquired together with an optical tomography image. The two mammograms may be used for image registration thereby possibly providing information for a deformation prior. Additional information on tissue composition within the breast may be received by acquiring the first and second mammogram at different X-ray settings.
Abstract:
The invention relates to an apparatus (100) for processing a medical image (IM) of a structure of interest (SOI). The apparatus comprises a first unit (101) configured for decomposing the medical image (IM) into at least one band pass image (Bdl) and a low pass image (L); a user interface (102) arranged for enabling a user to specify an enhancement curve (EC) for the radiographic image (IM) based on at least one of (i) a metric structure length (l), (ii) a structure selectivity (s) and (iii) a structure enhancement strength (a); a second unit (103) configured for applying the enhancement curve (EC) to the at least one band pass image (Bdl) for generating at least one enhanced band pass image EBdl; and a third unit (105) configured for composing an enhanced medical image (EIM) based on the at least one enhanced band pass image (EBdl) and the low pass image (L). The invention also relates to a corresponding method of processing a medical image (IM).
Abstract:
The present invention relates to compression of breasts during mammography, and in particular to a compression element for a breast holding arrangement for mammography examinations. In order to ensure an increased user comfort and an improved application of pressure force, a compression element (10) for a breast holding arrangement for mammography examinations is provided, comprising a supporting structure (12), a first surface (14), and a second surface (16). The supporting structure is configured to be attached to a mounting structure for exerting a compression force on a breast under examination. The first and second surfaces are attached to the support structure; and the first and second surfaces are arranged facing in opposite directions. The second surface is provided to compress the breast under examination. The first surface is provided to be visible to a user, wherein the first surface is provided as an optically adaptable surface (18). The first and second surfaces are provided to be at least temporarily partly transparent.
Abstract:
The present invention relates to medical image viewing in relation with navigation in X-ray imaging. In order to provide improved X-ray images, for example for cardiac procedures, allowing a facilitated perception while ensuring that increased details are visible, a medical image viewing device (10) for navigation in X-ray imaging is provided that comprises an image data providing unit (12), a processing unit (14), and a display unit (16). The image data providing unit is configured to provide an angiographic image of a region of interest of an object. The processing unit is configured to identify a suppression area for partial bone suppression within the angiographic image, and to identify and locally suppress predetermined bone structures in the angiographic image in the suppression area, and to generate a partly-bone-suppressed image. Further, the display unit is configured to display the partly-bone-suppressed image.
Abstract:
The present invention relates to compression of breasts during mammography, and in particular to a compression element for a breast holding arrangement for mammography examinations. In order to ensure an increased user comfort and an improved application of pressure force, a compression element (10) for a breast holding arrangement for mammography examinations is provided, comprising a supporting structure (12), a first surface (14), and a second surface (16). The supporting structure is configured to be attached to a mounting structure for exerting a compression force on a breast under examination. The first and second surfaces are attached to the support structure; and the first and second surfaces are arranged facing in opposite directions. The second surface is provided to compress the breast under examination. The first surface is provided to be visible to a user, wherein the first surface is provided as an optically adaptable surface (18). The first and second surfaces are provided to be at least temporarily partly transparent.
Abstract:
A system and method for achieving more accurate results when applying an image processing task to a series of medical images of a patient, without significantly increasing processing resource. The proposed system and method is based on receiving a plurality of image sequences of a particular anatomical region, each capturing cyclical movement of an anatomical object. Each image sequence is supplied to a classifier module which employs use of one or more machine learning algorithms to derive at least one score for each image sequence indicative of predicted success or quality of a result of the image processing task if applied to the given image series. This permits an assessment to be made in advance of which of the plurality of image series is most likely to result in the best (e.g. highest quality, or greatest amount of information) results from the image processing task. This allows maximization of the quality of image processing results, without the need to actually process each of the image series with the image processing task, which would consume a large amount of processing resource and consume time.