Abstract:
Provided are an apparatus and a method for managing a fuel cell vehicle system, and more particularly, an apparatus and a method for managing a fuel cell vehicle system capable of optimally maintaining a driving method based on environmental information and product information.
Abstract:
Provided are a method for preparing a catalyst layer by an in-situ sol-gel reaction of tetraethoxysilane, and a fuel cell including the catalyst layer prepared thereby. Addition of silica mitigates specific adsorption of sulfonate groups contained in a Nafion ionomer on a Pt catalyst layer in a high-voltage region where the role of a catalyst predominates, resulting in improvement of ORR performance.
Abstract:
Provided is a method for optimization of fuel cells operating conditions using a hybrid model, and more particularly, a method for optimization of fuel cells operating conditions using a hybrid model which generates a life prediction model determined by time and temperature based on a theoretical performance model and an empirical durability model and estimates an optimal operation temperature in a target life based on the life prediction model.
Abstract:
A reverse electrodialysis device, including an anode, a cathode, one or more single cells spaced apart from each other between the anode and the cathode, each single cell including a cation exchange membrane and an anion exchange membrane, and a shielding membrane disposed to define spaces between the anode and the single cell and/or between the cathode and the single cell. The cation exchange membrane and the shielding membrane include a porous polymer substrate and a polymer electrolyte incorporated into pores in the substrate.
Abstract:
Provided are an apparatus and a method for managing a fuel cell vehicle system, and more particularly, an apparatus and a method for managing a fuel cell vehicle system capable of optimally maintaining a driving method based on environmental information and product information.
Abstract:
Provided are an apparatus and a method for managing a stationary fuel cell system, and more particularly, an apparatus and a method for managing a stationary fuel cell system capable of optimally maintaining a driving method based on environmental information and product information.
Abstract:
A reverse electrodialysis device, including an anode, a cathode, one or more single cells spaced apart from each other between the anode and the cathode, each single cell including a cation exchange membrane and an anion exchange membrane, and a shielding membrane disposed to define spaces between the anode and the single cell and/or between the cathode and the single cell. The cation exchange membrane and the shielding membrane include a porous polymer substrate and a polymer electrolyte incorporated into pores in the substrate.
Abstract:
Provided are a method for preparing a catalyst layer by an in-situ sol-gel reaction of tetraethoxysilane, and a fuel cell including the catalyst layer prepared thereby. Addition of silica mitigates specific adsorption of sulfonate groups contained in a Nafion ionomer on a Pt catalyst layer in a high-voltage region where the role of a catalyst predominates, resulting in improvement of ORR performance.
Abstract:
Provided is an apparatus for soft-sensing a fuel cell system. The apparatus includes: a connecting unit detachable from a control unit for being connected to an outside of a stationary fuel cell system; a collecting unit connected to the connecting unit and receiving data of the stationary fuel cell system; a quality variable predicting unit connected to the collecting unit and predicting a quality variable of the stationary fuel cell system based on the received data; and a monitoring unit connected to the quality variable predicting unit and outputting the predicted quality variable. The quality variable predicting unit is configured to predict the quality variable predictable including at least any one of a concentration of carbon monoxide in a reformed gas at a rear end of a fuel converting system, and a concentration of methane in the reformed gas at the rear end of the fuel converting system.
Abstract:
Provided are an apparatus and a method for managing a fuel cell vehicle system, and more particularly, an apparatus and a method for managing a fuel cell vehicle system capable of optimally maintaining a driving method based on environmental information and product information.