Abstract:
The present disclosure relates to a method and an apparatus for manufacturing a core-shell catalyst, and more particularly, to a method and an apparatus for manufacturing a core-shell catalyst, in which a particle in the form of a core-shell in which the metal nanoparticle is coated with platinum is manufactured by substituting copper and platinum through a method of manufacturing a metal nanoparticle by emitting a laser beam to a metal ingot, and providing a particular electric potential value, and as a result, it is possible to continuously produce nanoscale uniform core-shell catalysts in large quantities.
Abstract:
The present disclosure relates to a method and an apparatus for manufacturing a core-shell catalyst, and more particularly, to a method and an apparatus for manufacturing a core-shell catalyst, in which a particle in the form of a core-shell in which the metal nanoparticle is coated with platinum is manufactured by substituting copper and platinum through a method of manufacturing a metal nanoparticle by emitting a laser beam to a metal ingot, and providing a particular electric potential value, and as a result, it is possible to continuously produce nanoscale uniform core-shell catalysts in large quantities.
Abstract:
The present disclosure relates to a method and an apparatus for manufacturing a core-shell catalyst, and more particularly, to a method and an apparatus for manufacturing a core-shell catalyst, in which a particle in the form of a core-shell in which the metal nanoparticle is coated with platinum is manufactured by substituting copper and platinum through a method of manufacturing a metal nanoparticle by emitting a laser beam to a metal ingot, and providing a particular electric potential value, and as a result, it is possible to continuously produce nanoscale uniform core-shell catalysts in large quantities.
Abstract:
Provided are a method for preparing a catalyst layer by an in-situ sol-gel reaction of tetraethoxysilane, and a fuel cell including the catalyst layer prepared thereby. Addition of silica mitigates specific adsorption of sulfonate groups contained in a Nafion ionomer on a Pt catalyst layer in a high-voltage region where the role of a catalyst predominates, resulting in improvement of ORR performance.
Abstract:
Provided is a method for optimization of fuel cells operating conditions using a hybrid model, and more particularly, a method for optimization of fuel cells operating conditions using a hybrid model which generates a life prediction model determined by time and temperature based on a theoretical performance model and an empirical durability model and estimates an optimal operation temperature in a target life based on the life prediction model.
Abstract:
A block copolymer, an ion-exchange membrane including the block copolymer and a method of preparing the block copolymer are provided. The block copolymer may include a hydrophobic repeating unit and a hydrophilic repeating unit.
Abstract:
Provided are an apparatus and a method for managing a fuel cell vehicle system, and more particularly, an apparatus and a method for managing a fuel cell vehicle system capable of optimally maintaining a driving method based on environmental information and product information.
Abstract:
The present disclosure relates to a method for manufacturing core-shell particles using carbon monoxide, and more particularly, to a method for manufacturing core-shell particles, the method of which a simple and fast one-pot reaction enables particle manufacturing to reduce process costs, facilitate scale-up, change various types of core and shell metals, and form a multi-layered shell by including the steps of adsorbing carbon monoxide on a transition metal for a core, and reacting carbon monoxide adsorbed on the surface of the transition metal for the core, a metal precursor for a shell, and a solvent to form particles with a core-shell structure having a reduced metal shell layer formed on a transition metal core.
Abstract:
Provided are an apparatus and a method for managing a fuel cell vehicle system, and more particularly, an apparatus and a method for managing a fuel cell vehicle system capable of optimally maintaining a driving method based on environmental information and product information.
Abstract:
Provided are a method for preparing a catalyst layer by an in-situ sol-gel reaction of tetraethoxysilane, and a fuel cell including the catalyst layer prepared thereby. Addition of silica mitigates specific adsorption of sulfonate groups contained in a Nafion ionomer on a Pt catalyst layer in a high-voltage region where the role of a catalyst predominates, resulting in improvement of ORR performance.