Abstract:
The present invention provides the device for detecting an island position of an ingot growing furnace, comprising a control means for detecting the position of an island by analyzing the image obtained by the photographing means, wherein the control means derives a plurality of singularities with respect to the temperature or brightness from the image, derives a plurality of connection lines respectively forming straight lines by the mutual connection of a series of the singularities, considers an area in which the most intersections are generated as an island among areas in which the plurality of connection lines intersect each other, and determines whether the island is positioned in a seed contact area in which the seed is set to be lowered.
Abstract:
The present invention provides the device for detecting an island position of an ingot growing furnace, comprising a control means for detecting the position of an island by analyzing the image obtained by the photographing means, wherein the control means derives a plurality of singularities with respect to the temperature or brightness from the image, derives a plurality of connection lines respectively forming straight lines by the mutual connection of a series of the singularities, considers an area in which the most intersections are generated as an island among areas in which the plurality of connection lines intersect each other, and determines whether the island is positioned in a seed contact area in which the seed is set to be lowered.
Abstract:
Provided is a wire saw (1) that cuts an ingot (I) while swinging the ingot. The wire saw (1) includes a first driving block (100), a second driving block (110), and an ingot holder (120). When the first driving block (100) moves, the second driving block (110) moves in a direction perpendicular to a moving direction of the first driving block (100), and simultaneously the ingot holder (120) is swung. The ingot holder (120) is transferred to a z-axial direction in which the ingot is cut by a lifting block (73), and the lifting block (73) moves independently of the first or second driving block (100 or 1110). Thus, the ingot (I) can be swung separately from the lifting block (73), and be inhibited from moving left and right. Since only the first driving block (100) is controlled, easy control and a simple structure are provided.
Abstract:
An embedded measurement device that is capable of measuring the component and a composition of a multi-phase flow fluid flowing in a pipe. The embedded measurement device includes: a high-pressure pipe tube in which the multi-phase flow fluid flows; a Raman probe that is partially inserted inside the high-pressure pipe tube and has an optical lens; and a Raman peak analysis unit that is connected to another part of the Raman probe. The device for measuring the composition of the multi-phase flow fluid measures a Raman peak intensity value of the multi-phase flow fluid in the high-pressure pipe tube by using the Raman probe, thereby determining the composition of the fluid.