Abstract:
Disclosed is an apparatus for controlling a fuel concentration of a liquid fuel cell apparatus by voltage amplitude control-based feed-back control without using a concentration sensor, which saves power consumed by the fuel cell apparatus and lowers a price of the fuel cell apparatus by using the fuel cell in a simple and small design without using a concentration sensor.
Abstract:
Provided is a porous carbon material having carbon nano-rods on the surface thereof. The porous carbon material has an increased specific surface area and an increased electrochemically active area, and thus may be expected to provide improved performance, when used as an electrode for electrochemical reactions. In addition, the carbon nano-rods of the porous carbon material are formed through an etching process using a catalyst for etching formed on the carbon material, and thus the carbon material may have various functions.
Abstract:
Exemplary embodiments of the present invention may provide a magnesium electrode including an electrode plate including magnesium and a protective layer located on at least a part of a surface of the electrode plate, in which the protective layer includes a phosphoric acid alkyl ester compound.
Abstract:
Disclosed is an electrolyte for a redox flow battery including at least one additive selected from the group consisting of a taurine compound and an amino acid compound. Thus, it is possible to provide an electrolyte for a redox flow battery which may have high solubility of active materials, be stable at high temperature or high pH, and show excellent electrochemical properties. In addition, when the electrolyte for a redox flow battery includes a nitrogen (N)-containing organic molecule having high redox activity as an active material, it is possible to realize a high-efficiency demetallized redox flow battery capable of solving the problems of dendrite formation or irreversible precipitation fundamentally.