Abstract:
The present disclosure relates to a catalyst for preparing 1,2-pentanediol from furfural and/or furfuryl alcohol, and more particularly to a catalyst, which is configured such that a catalytically active metal containing both at least one transition metal and tin (Sn) is supported on a basic support and is capable of increasing reaction selectivity for 1,2-pentanediol, and a method of preparing 1,2-pentanediol using the same.
Abstract:
The present invention provides a method for directly producing lactide by subjecting lactic acid to a dehydration reaction in the presence of a catalyst comprising a tin compound, preferably, a tin (IV) compound, wherein lactide can be produced directly or by one step from lactic acid, without going through the step of producing or separating lactic acid oligomer. The method of the present invention has advantages of causing no loss of lactic acid, having a high conversion ratio to lactic acid and a high selectivity to optically pure lactide, and maintaining a long life time of the catalyst. Further, since lactic acid oligomer is not or hardly generated and the selectivity of meso-lactide is low, the method also has an advantage that the cost for removing or purifying this can be saved.
Abstract:
The present invention provides a method for directly producing lactide by subjecting lactic acid to a dehydration reaction in the presence of a catalyst comprising a tin compound, preferably, a tin (IV) compound, wherein lactide can be produced directly or by one step from lactic acid, without going through the step of producing or separating lactic acid oligomer. The method of the present invention has advantages of causing no loss of lactic acid, having a high conversion ratio to lactic acid and a high selectivity to optically pure lactide, and maintaining a long life time of the catalyst. Further, since lactic acid oligomer is not or hardly generated and the selectivity of meso-lactide is low, the method also has an advantage that the cost for removing or purifying this can be saved.
Abstract:
Embodiments of the present disclosure pertain to methods of sorption of H2O from an environment by associating the environment with a porous material such that the association results in the sorption of H2O to the porous material. The porous material includes a (M)-2,4-pyridinedicarboxylic acid coordination polymer, where M is a divalent metal ion selected from the group consisting of Mn, Fe, Co, Ni, Mg, and combinations thereof. The coordination polymer has a one-dimensional pore structure and shows reversible soft-crystal behavior. The porous material may be a Mg(II) 2,4-pyridinedicarboxylic acid coordination polymer (i.e., Mg-CUK-1). The methods of the present disclosure may also include one or more steps of releasing the sorbed H2O from the porous material and reusing the porous material after the releasing step for sorption of additional H2O from the environment.
Abstract:
The present invention relates to a nitrogen adsorbent having nitrogen selective adsorptivity by including an organic-inorganic hybrid nanoporous material having a coordinatively unsaturated metal site with density of 0.2 mmol/g to 10 mmol/g in a skeleton, surface or pore; and use thereof, such as a device separating nitrogen from a gas mixture containing nitrogen and methane, a pressure swing adsorption separation device and a temperature swing adsorption separation device for separating nitrogen provided, a method for separating nitrogen and methane from a gas mixture containing nitrogen and methane, a device for separating nitrogen, oxygen or argon, a method for separating nitrogen, oxygen or argon from a gas mixture containing nitrogen, oxygen or argon, and a method for preparing nitrogen or high purity inert gas all separated from a gas mixture containing nitrogen and inert gas.
Abstract:
The present invention provides a method for directly producing lactide by subjecting lactic acid to a dehydration reaction in the presence of a catalyst comprising a tin compound, preferably, a tin (IV) compound, wherein lactide can be produced directly or by one step from lactic acid, without going through the step of producing or separating lactic acid oligomer. The method of the present invention has advantages of causing no loss of lactic acid, having a high conversion ratio to lactic acid and a high selectivity to optically pure lactide, and maintaining a long life time of the catalyst. Further, since lactic acid oligomer is not or hardly generated and the selectivity of meso-lactide is low, the method also has an advantage that the cost for removing or purifying this can be saved.
Abstract:
The present invention relates to a nitrogen adsorbent having nitrogen selective adsorptivity by including an organic-inorganic hybrid nanoporous material having a coordinatively unsaturated metal site with density of 0.2 mmol/g to 10 mmol/g in a skeleton, surface or pore; and use thereof, such as a device separating nitrogen from a gas mixture containing nitrogen and methane, a pressure swing adsorption separation device and a temperature swing adsorption separation device for separating nitrogen provided, a method for separating nitrogen and methane from a gas mixture containing nitrogen and methane, a device for separating nitrogen, oxygen or argon, a method for separating nitrogen, oxygen or argon from a gas mixture containing nitrogen, oxygen or argon, and a method for preparing nitrogen or high purity inert gas all separated from a gas mixture containing nitrogen and inert gas.
Abstract:
Embodiments of the present disclosure pertain to methods of sorption of H2O from an environment by associating the environment with a porous material such that the association results in the sorption of H2O to the porous material. The porous material includes a (M)-2,4-pyridinedicarboxylic acid coordination polymer, where M is a divalent metal ion selected from the group consisting of Mn, Fe, Co, Ni, Mg, and combinations thereof. The coordination polymer has a one-dimensional pore structure and shows reversible soft-crystal behavior. The porous material may be a Mg(II) 2,4-pyridinedicarboxylic acid coordination polymer (i.e., Mg-CUK-1). The methods of the present disclosure may also include one or more steps of releasing the sorbed H2O from the porous material and reusing the porous material after the releasing step for sorption of additional H2O from the environment.
Abstract:
Embodiments of the present disclosure pertain to methods of sorption of H2O from an environment by associating the environment with a porous material such that the association results in the sorption of H2O to the porous material. The porous material includes a (M)-2,4-pyridinedicarboxylic acid coordination polymer, where M is a divalent metal ion selected from the group consisting of Mn, Fe, Co, Ni, Mg, and combinations thereof. The coordination polymer has a one-dimensional pore structure and shows reversible soft-crystal behavior. The porous material may be a Mg(II) 2,4-pyridinedicarboxylic acid coordination polymer (i.e., Mg-CUK-1). The methods of the present disclosure may also include one or more steps of releasing the sorbed H2O from the porous material and reusing the porous material after the releasing step for sorption of additional H2O from the environment.
Abstract:
The present invention relates to a method for recovering indium in a high selectivity and a high efficiency from an indium-containing solution, dispersion or mixture such as seawater, industrial water, waste water, cooling water, a solution extracted from wastes of electronic products such as display panel, or the like.