摘要:
Fabrication of a high sensitivity potentiometric biosensor is described. The present inventors have developed and characterized a novel amplification platform using a gold nanoparticle (GNPs) electrodeposition method. The synthesized GNP sizes were found to be dependent of HAuCl4 concentration, media acid, scan cycles and scan rate. A systematic investigation into the adsorption of different sizes of proteins from aqueous electrolyte solution onto the electrodeposited GNPs surface by the potentiometric method was performed. Results suggest that the size of different proteins affect how they bond to different sizes of GNPs. This GNPs-based biosensor can retain the native-like structure of proteins, and successfully detect proteins at a high sensitivity level. The resulting glucose and immune biosensors also exhibit low detection limit and wide linear range. This improvement to potentiometric devices enables them to serve as highly sensitive detectors for biomolecules and provides a model that can be used to predict protein bonding on nanoparticles.
摘要:
Specific ionic interactions with a sensing material that is electrically coupled with the floating gate of a floating gate-based ion sensitive field effect transistor (FGISFET) may be used to sense a target material. For example, an FGISFET can use (e.g., previously demonstrated) ionic interaction-based sensing techniques with the floating gate of floating gate field effect transistors. The floating gate can serves as a probe and an interface to convert chemical and/or biological signals to electrical signals, which can be measured by monitoring the change in the device's threshold voltage, VT.
摘要:
A real-time method employing a portable peptide-containing potentiometric biosensor, can directly detect and/or quantify bacterial spores. Two peptides for specific recognition of B. subtilis and B. anthracis Sterne may be immobilized by a polysiloxane monolayer immobilization (PMI) technique. The sensors translate the biological recognition event into a potential change by detecting, for example, B. subtilis spores in a concentration range of 0.08-7.3×104 CFU/ml. The sensing method exhibited highly selective recognition properties towards Bacillus subtilis spores over other kinds of spores. The selectivity coefficients of the sensors for other kinds of spores are in the range of 0-1.0×10−5. The biosensor method not only has the specificity to distinguish Bacillus subtilis spores in a mixture of B. subtilis and B. thuringiensis (thur.) Kurstaki spores, but also can discriminate between live and dead B. subtilis spores. Furthermore, the sensing method can distinguish a Bacillus subtilis 1A700 from other B. subtilis strain. Assay time may be as low as about 5 minutes for a single test. Rapid identification of B. anthracis Sterne and B. anthracis ΔAmes was also provided.
摘要:
The present invention relates to combining surface molecular imprinting (SMI) with the production of self-assembled monolayers (SAM) of hydroxyl alkanethiolate molecules on gold coated chip surfaces. In this technique, the sensing element is placed on the transducer and the whole assembly can then be miniaturized and integrated into a smart chip. These sensors can detect, nanomolar quantities of complex biomolecules.