摘要:
Encoder and decoder circuits that encode and decode a series of data words to/from a series of code words. The data words include L symbols. The code words include M symbols, where M is larger than L. A set of tightly coupled M links to convey respective symbols in each of the series of code words. The code words are selected such that between every two consecutive code words in a series of code words, an equal number of transitions from low to high and high to low occur on a subset of the M-links.
摘要:
A decision feedback equalizer is calibrated to compensate for estimated inter-symbol interference in a received signal and offsets of sampling devices. The decision feedback equalizer is configured so that an output signal of a sampling circuit represents a comparison between an input signal and a reference of the sampling circuit under calibration. An input signal is received over a communication channel that includes a predetermined pattern. The predetermined pattern is compared to the output signal to determine an adjusted reference for configuring the sampling circuit that accounts for both offset and inter-symbol interference effects.
摘要:
A receiver includes an amplifier and a transconductance bias circuit. The amplifier gain is largely determined by transconductance and load impedance. The transconductance bias circuit varies the transconductance in inverse proportion to the load impedance to maintain the gain over process, voltage, and temperature. Differential amplifiers can use separate transconductance bias circuits for each amplifier leg, and the bias circuits can be independently controlled to minimize common-mode gain and voltage offsets.
摘要:
Encoder and decoder circuits that encode and decode a series of data words to/from a series of code words. The data words include L symbols. The code words include M symbols, where M is larger than L. A set of tightly coupled M links to convey respective symbols in each of the series of code words. The code words are selected such that between every two consecutive code words in a series of code words, an equal number of transitions from low to high and high to low occur on a subset of the M-links.
摘要:
A decision feedback equalizer is calibrated to compensate for estimated inter-symbol interference in a received signal and offsets of sampling devices. The decision feedback equalizer is configured so that an output signal of a sampling circuit represents a comparison between an input signal and a reference of the sampling circuit under calibration. An input signal is received over a communication channel that includes a predetermined pattern. The predetermined pattern is compared to the output signal to determine an adjusted reference for configuring the sampling circuit that accounts for both offset and inter-symbol interference effects.
摘要:
A duty-cycle correction circuit calibrates the duty cycle of a periodic input signal. The correction circuit includes a state machine that samples the input signal using a sample signal of a sample period. The sample period is selected to scan a period of the input signal over a number of sample periods. The resultant difference between the number of high and low samples provides a measure of the duty cycle deviation from e.g. 50%. An adjustable delay circuit adjusts the relative timing of the rising and falling edges of the input signal, and thus the duty cycle, responsive to the measure of duty cycle.
摘要:
High resolution output drivers having a relatively small number of sub-driver branches or slices each having nominal impedances substantially larger than a quantization step and that incrementally differ from one another by an impedance step substantially smaller than a quantization step. In one implementation, such “differential” or “non-uniform” sub-driver slices implement respective elements of an n choose k equalizer, with each such differential sub-driver slice being implemented by a uniform-element impedance calibration DAC. In another implementation, each component of a uniform-slice equalizer is implemented by a differential-slice impedance calibration DAC, and in yet another implementation, each component of a differential-slice equalizer is implemented by a differential-slice impedance calibration DAC. In an additional set of implementations, equalization and impedance calibration functions are implemented bilaterally in respective parallel sets of driver branches, rather than in the nested “DAC within a DAC” arrangement of the hierarchical implementations. Through such bilateral arrangement, multiplication of the equalizer and calibrator quantizations is avoided, thereby lowering the total number of sub-driver slices required to meet the specified ranges and resolutions.
摘要:
High resolution output drivers having a relatively small number of sub-driver branches or slices each having nominal impedances substantially larger than a quantization step and that incrementally differ from one another by an impedance step substantially smaller than a quantization step. In one implementation, such “differential” or “non-uniform” sub-driver slices implement respective elements of an n choose k equalizer, with each such differential sub-driver slice being implemented by a uniform-element impedance calibration DAC. In another implementation, each component of a uniform-slice equalizer is implemented by a differential-slice impedance calibration DAC, and in yet another implementation, each component of a differential-slice equalizer is implemented by a differential-slice impedance calibration DAC. In an additional set of implementations, equalization and impedance calibration functions are implemented bilaterally in respective parallel sets of driver branches, rather than in the nested “DAC within a DAC” arrangement of the hierarchical implementations. Through such bilateral arrangement, multiplication of the equalizer and calibrator quantizations is avoided, thereby lowering the total number of sub-driver slices required to meet the specified ranges and resolutions.
摘要:
A transceiver includes a transmitter and receiver that form a series current path between two power-supply nodes. Powering both the transmitter and receiver with the same supply current saves power. The transmitter functions as a resistive load for the receiver, and thus performs useful work with power that would otherwise be dissipated as waste heat.
摘要:
The disclosed embodiments relate to the design of a linear equalizer that supports low-power, high-speed data transfers. In some embodiments, this linear equalizer contains a passive network that provides selective frequency peaking in a frequency range associated with a falling edge of a frequency response of the channel. It also includes a level shifter coupled between the channel and the passive network, wherein the level shifter is an active component that provides amplification and/or level-shifting. Moreover, the linear equalizer is designed so that power from the level shifter facilitates the selective frequency peaking of the passive network.