摘要:
An apparatus and method for switching VOIP packets in a data network, wherein the method includes the steps of receiving a first packet in a network switch and determining if the first packet is a VOIP packet. Further, method includes determining a dynamically negotiated VOIP port for a VOIP session from at least one of the first packet and a second packet received in the network switch, if the first packet is determined to be the VOIP packet. Finally, the method includes the steps of classifying all subsequent VOIP packets corresponding to the dynamically negotiated VOIP port in accordance with predetermined parameters. The apparatus includes a network switch having at least one data port interface controller supporting a plurality of data ports for transmitting and receiving data, and a fast filtering processor in communication with the at least one data port interface. At least one filtering table in communication with the fast filtering processor is provided, wherein the fast filtering processor is configured to snoop packets being transmitted through the network switch to trap a VOIP call setup message, and thereafter, determine a dynamically negotiated VOIP port so that all subsequent VOIP packets can be filtered and assigned an appropriate priority.
摘要:
An apparatus and method for switching VOIP packets in a data network, wherein the method includes the steps of receiving a first packet in a network switch and determining if the first packet is a VOIP packet. Further, method includes determining a dynamically negotiated VOIP port for a VOIP session from at least one of the first packet and a second packet received in the network switch, if the first packet is determined to be the VOIP packet. Finally, the method includes the steps of classifying all subsequent VOIP packets corresponding to the dynamically negotiated VOIP port in accordance with predetermined parameters. The apparatus includes a network switch having at least one data port interface controller supporting a plurality of data ports for transmitting and receiving data, and a fast filtering processor in communication with the at least one data port interface. At least one filtering table in communication with the fast filtering processor is provided, wherein the fast filtering processor is configured to snoop packets being transmitted through the network switch to trap a VOIP call setup message, and thereafter, determine a dynamically negotiated VOIP port so that all subsequent VOIP packets can be filtered and assigned an appropriate priority.
摘要:
A method for selectively controlling the flow of data through a network device is discussed. The network device has a plurality of ports, with each port of the plurality of ports having a plurality of priority queues. Congestion at one priority queue of the plurality of priority queues is detected and a virtual channel message is sent to other network devices connected to the network device causing data destined for the one priority queue to be halted. After the congestion at the one priority queue has abated, a virtual channel resume message is sent to the other network devices.
摘要:
A switch assembly having multiple blades in a chassis and a method of using that assembly to switch data is disclosed. A network switch assembly for network communications includes at least one fabric blade and a plurality of port blades. The at least one fabric blade has at least one switch having a plurality of data port interfaces, supporting a plurality of fabric data ports transmitting and receiving data, and a CPU interface, where CPU interface is configured to communicate with a CPU. The at least one fabric blade also has a CPU subsystem communicating with the CPU interface. Each of said plurality of port blades has at least one switch having a plurality of data port interfaces, supporting a plurality of port data ports transmitting and receiving data. The plurality of port data ports communicate with the plurality of fabric data ports along multiple paths such that data received by the port data ports is switched to a destination port of the network switch assembly along a specified path of the multiple paths based on a portion of the received data. In particular, the invention relates to configurations having five and nine blades to provide the requisite switching capacity.
摘要:
A network switch for switching packets from a source to a destination includes a source port for receiving an incoming packet from a source, a destination port which contains a path to a destination for the packet, and a filter unit for constructing and applying a filter to selected fields of the incoming packet. The filter unit further includes filtering logic for selecting desired fields of the incoming packet and copying selected field information therefrom. The filtering logic also constructs a field value based upon the selected fields, and applies a plurality stored field masks on the field value. The switch additionally includes a rules table which contains a plurality of rules therein. The filtering logic is configured to perform lookups of the rules table in order to determine actions which must be taken based upon the result of a comparison between the field value and the stored filter masks and the rules table lookup.
摘要:
A method of forwarding data in a network switch fabric is disclosed. An incoming data packet is received at a first port of the fabric and a first packet portion, less than a full packet length, is read to determine particular packet information including an opcode value. The opcode value allows the fabric to determine the packet type, such a a whether the packet is a broadcast packet, a unicast packet, a multicast packet, etc. Based on the opcode value read, a particular forwarding table of a plurality forwarding tables is read and an egress port bitmap is determined based on entries read from the particular forwarding table. The incoming data packet is then forwarded based on the egress port bitmap. In addition, the architecture of the switch fabric is also disclosed.
摘要:
A switch is configured to block packets from being transmitted through designated ports. The switch has port bitmap generator configured to obtain a port bitmap and a table is configured to store a block mask indicating which port the packet should not be transmitted. A block mask lookup is configured to determine the block mask for the packet from the table, and a transmit port bitmap generator is configured to determine which ports the packet should be transmitted using the port bitmap and the block mask.
摘要:
A method for selectively controlling the flow of data through a network device is discussed. The network device has a plurality of ports, with each port of the plurality of ports having a plurality of priority queues. Congestion at one priority queue of the plurality of priority queues is detected and a virtual channel message is sent to other network devices connected to the network device causing data destined for the one priority queue to be halted. After the congestion at the one priority queue has abated, a virtual channel resume message is sent to the other network devices.
摘要:
A method for establishing a virtual channel between network devices is disclosed. In the case of a local network device establishing a virtual channel with a remote network device, a virtual channel request message is sent from the local network device to the remote network device. A virtual channel acknowledgement message and a remote capability list are received and a virtual channel resume message and a local capability list are sent. The virtual channel is then enabled. In the case of a remote network device establishing a virtual channel with a local network device, a virtual channel request message is received from a local network device by a remote network device. A virtual channel acknowledgement message and a remote capability list are sent and a virtual channel resume message and a local capability list are received. The virtual channel is then enabled.
摘要:
A method for selectively controlling the flow of data through a network device is discussed. The network device has a plurality of ports, with each port of the plurality of ports having a plurality of priority queues. Congestion at one priority queue of the plurality of priority queues is detected and a virtual channel message is sent to other network devices connected to the network device causing data destined for the one priority queue to be halted. After the congestion at the one priority queue has abated, a virtual channel resume message is sent to the other network devices.