摘要:
The disclosure relates to an optical system of an illumination device of a microlithographic projection exposure apparatus, including at least one first light-conductance-increasing element having a plurality of diffractively or refractively beam-deflecting structures extending in a common first preferred direction the light-conductance-increasing element having an optically uniaxial crystal material in such a way that the optical crystal axis of the crystal material is substantially parallel or substantially perpendicular to the first preferred direction.
摘要:
The disclosure relates to an optical system of an illumination device of a microlithographic projection exposure apparatus, comprising at least one first light-conductance-increasing element having a plurality of diffractively or refractively beam-deflecting structures extending in a common first preferred direction the light-conductance-increasing element having an optically uniaxial crystal material in such a way that the optical crystal axis of the crystal material is substantially parallel or substantially perpendicular to the first preferred direction.
摘要:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.
摘要:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a second adjusted intensity distribution in the associated exit pupil by less than 0.1 in at least one of an inner σ or an outer σ.
摘要:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.
摘要:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.
摘要:
An optical beam deflecting element may be used effectively as an energy distribution manipulator in an illumination system to vary the energy distribution within a given spatial intensity distribution in a pupil plane of the illumination system substantially without changing the shape and size and position of illuminated areas in the pupil plane.
摘要:
An optical beam deflecting element may be used effectively as an energy distribution manipulator in an illumination system to vary the energy distribution within a given spatial intensity distribution in a pupil plane of the illumination system substantially without changing the shape and size and position of illuminated areas in the pupil plane.
摘要:
A microlithography projection exposure system has an illumination system with an illumination optical system. The latter can have at least one diffractive optical element, which is divided into multiple adjacently arranged individual elements, each of which has one specified bundle-forming and polarizing effect.
摘要:
In some embodiments, a microlithography projection exposure system has an illumination system with an illumination optical system. The latter can have at least one diffractive optical element, which is divided into multiple adjacently arranged individual elements, each of which has one specified bundle-forming and polarizing effect. The at least one diffractive optical element can be produced as follows: First a bundle formation substrate is optically polished on one joining side. Then the bundle formation substrate is joined to an optically doubly refracting polarization formation substrate to form an optical raw element. Then bundle-forming structures are applied into the bundle formation substrate, the latter being divided corresponding to the later individual elements. The layer thickness of the polarization formation substrate at the location of specified individual elements can then removed as far as the polished joining side of the bundle formation substrate. The result can be a diffractive optical element in which at least two different types of individual elements with different specified bundle-forming and polarizing effect can be produced with high structural precision.