摘要:
A conductive cantilever having a conductive probe on its free end is supported by a piezoelectric element, which oscillates upon reception of an AC voltage from a first AC voltage supply unit. An AC voltage is applied between a conductive sample and the probe by a variable DC voltage supply unit and a second AC voltage supply unit. An AM demodulator demodulates a signal from a displacement meter at an angular frequency of the first AC voltage supply unit. A lowpass filter extracts a DC component from an output signal from the AM demodulator, and a synchronism detector extracts a component concerning to the angular frequency twice as high as that of the second AC voltage supply unit from the AM demodulator output signal. A Z controller controls a position of a tube scanner based on an output signal from the subtracter which subtracts an output signal of the synchronism detector from an output signal of the lowpass filter. A data processing unit maps configuration data from the Z controller and surface potential data from a voltage control circuit, referring to XY data from an XY scanning circuit, such that a configuration image and a potential distribution image of the sample are obtained.
摘要:
A scanning probe microscope comprises a cantilever having a conductive probe positioned near a sample, an actuator for moving the sample to and away from the probe, a circuit for applying a bias voltage between the probe and sample to produce a tunnel current therebetween, a circuit for detecting the produced tunnel current, a circuit for detecting the amount of displacement of the probe resultant from interatomic forces acting between atomics of the probe and sample, thereby producing signals, a circuit for providing the actuator for feedback in response to the output signals from the circuit to retain constant the distance between the probe and sample, thereby causing the actuator to move the sample, a circuit for forming an STS image data from the detected tunnel current, a circuit for forming an STM image data from the detected tunnel current, and a circuit for forming an AFM image data. Thus, the STS, STP and AFM images are separately obtained simultaneously.
摘要:
A scanning type tunnel microscope comprises a sample holding member for supporting a sample and a scanning probe which is arranged to face the sample to be separated therefrom by a very small distance and a supported by a scanning probe holding member. A tunnel current is flowed between the sample and scanning probe upon application of a voltage thereacross. A first actuator is coupled to the sample holding member and a second actuator is coupled to the scanning probe holding member so that the first and second actuators relatively drive said sample and said scanning probe in an axial direction and in a planar direction through said sample holding member and said scanning probe holding member. A differential micrometer is connected to the first actuator to move the actuator in the axial direction, and the micrometer and the second actuator are fixed on a substrate.
摘要:
A scanning tunnel spectroscope comprises a generator for applying a bias voltage (V.sub.T) of a sin wave between a sample and probe, an I-V converter for converting a tunnel current flowing when the probe is set close to the sample, to a tunnel current representing voltage singal (I.sub.T), a detector for detecting the absolute value of the voltage signal (I.sub.t), and a servo circuit for servo-controlling a distance between the sample and probe using the absolute value with the servo time constant set larger than five times the period of the bias voltage. The information concerning the unevenness of the sample is obtained based on an output of the servo control means. A unit is provided for effecting the analog operation to derive a differential conductance based on the tunnel current on the real time basis and measuring the unevenness data and differential conductance between the sample and probe kept constant.
摘要:
A method for analyzing a sample in a liquid is provided, which is suitable for easily and reliably preventing a liquid for analysis from being evaporated. When the sample in the liquid is observed by using a scanning probe microscope (SPM), a sealing liquid (17) immiscible with a liquid for analysis (16) is filled around the liquid for analysis (16), in which a sample (13) and a probe (15) are immersed, so as to form a sealing state, in which the liquid for analysis (16) is isolated from an external gas. The SPM enables the probe (15) disposed on a front end of a cantilever (14) to approach a surface of the sample (13) immersed in the liquid, scans the surface of the sample, and detects an interaction between the sample (13) and the probe (15), thereby generating an image.
摘要:
A frequency shift Δf obtained by an FM-AFM can be expressed by a simple linear coupling of a ΔfLR derived from a long-range interaction force and a ΔfSR derived from a short-range interaction force. Given this factor, a Δf curve on an atomic defect and a Δf curve on a target atom on the sample surface are each measured for only a relatively short range scale (S1 and S2), and a difference Δf curve of those two curves is obtained (S3). Since the difference Δf curve is derived only from a short-range interaction force, a known conversion operation is applied to this curve obtain an F curve which illustrates the relationship between the force and the distance Z, and then the short-range interaction force on the target atom is obtained from the F curve (S4). Since the range scale in measuring the Δf curve can be narrowed, the measurement time can be shortened, and since the conversion from the Δf curve into F curve is required only once, the computational time can also be shortened. Consequently, in obtaining the short-range interaction force which acts between the atom on the sample surface and the probe, the time required for the Δf curve's measurement and the computational time are shortened, which leads to accuracy improvement and throughput enhancement.
摘要:
The present invention provides a technique for eliminating the effect of the thermal drift and other variances and to improve the observing or manipulating accuracy of a scanning probe microscope or atom manipulator by using the technique to correct the aforementioned change in the relative position of the probe and the sample due to heat or other factors during the observation or manipulation. To obtain an image of the sample surface at the atomic level or perform a certain manipulation on an atom on the sample surface, the present invention can be applied to a probe position control method for controlling the relative position of the probe and the sample while measuring an interaction between the objective atom on the sample surface and the tip of the probe. In the present method, the relative position of the probe and the sample are changed while the probe is oscillated relative to the sample in two directions parallel to the sample surface at frequencies of f1 and f2 (S1a). Meanwhile, a point (or characteristic point) where the frequencies f1 and f2 disappear from the measured value of the interaction working in the direction perpendicular to the sample surface is detected (S1b). Then, the relative movement of the probe and the sample is controlled so that the measurement value thereby detected is maintained (i.e. the characteristic point is tracked; S1c), and the speed of the aforementioned relative movement is determined (S1d). Subsequently, the relative position control is corrected using the detected speed (S2).
摘要:
A bias voltage U.sub.B including a sine-wave voltage U.sub.T sin.omega. .sub.o t and an off-set voltage U.sub.REG is applied to an electrode on a sample. A potential U.sub.1 of the electrode is represented by: U.sub.1 =U.sub.REG +U.sub.T sin.omega. .sub.o t. A voltage including the bias voltage U.sub.B and a voltage .DELTA.U is applied to an electrode on the sample. A probe is approached to the sample by several nm, and a tunnel current I.sub.T flows therebetween. And the probe scans the surface of the sample. During the scan, the position of the probe is servo-controlled in the z-direction, to make constant the average absolute value of the tunnel current. The servo voltage is recorded thereby obtaining an STM image. Given that the potential difference between the electrode and a surface portion facing the probe is U.sub.S (x), the average of U.sub.1 +U.sub.S (x) becomes zero when the average of the tunnel current I.sub.T is zero. Accordingly, =0, that is, U.sub.S (x)=-U.sub.REG. Thus, by recording-U.sub.REG the potential distribution U.sub.S (x) on the sample surface is determined. Spectroscopic data is obtained by an analog operation unit, on the basis of a differential conductance .differential.I.sub.T /.differential.U.sub.T calculated from the tunnel current signal I.sub.T and the bias voltage U.sub.T.
摘要:
The present invention provides a technique for eliminating the effect of the thermal drift and other variances and to improve the observing or manipulating accuracy of a scanning probe microscope or atom manipulator by using the technique to correct the aforementioned change in the relative position of the probe and the sample due to heat or other factors during the observation or manipulation. To obtain an image of the sample surface at the atomic level or perform a certain manipulation on an atom on the sample surface, the present invention can be applied to a probe position control method for controlling the relative position of the probe and the sample while measuring an interaction between the objective atom on the sample surface and the tip of the probe. In the present method, the relative position of the probe and the sample are changed while the probe is oscillated relative to the sample in two directions parallel to the sample surface at frequencies of f1 and f2 (S1a). Meanwhile, a point (or characteristic point) where the frequencies f1 and f2 disappear from the measured value of the interaction working in the direction perpendicular to the sample surface is detected (S1b). Then, the relative movement of the probe and the sample is controlled so that the measurement value thereby detected is maintained (i.e. the characteristic point is tracked; S1c), and the speed of the aforementioned relative movement is determined (S1d). Subsequently, the relative position control is corrected using the detected speed (S2).
摘要:
A frequency shift Δf obtained by an FM-AFM can be expressed by a simple linear coupling of a ΔfLR derived from a long-range interaction force and a ΔfSR derived from a short-range interaction force. Given this factor, a Δf curve on an atomic defect and a Δf curve on a target atom on the sample surface are each measured for only a relatively short range scale (S1 and S2), and a difference Δf curve of those two curves is obtained (S3). Since the difference Δf curve is derived only from a short-range interaction force, a known conversion operation is applied to this curve obtain an F curve which illustrates the relationship between the force and the distance Z, and then the short-range interaction force on the target atom is obtained from the F curve (S4). Since the range scale in measuring the Δf curve can be narrowed, the measurement time can be shortened, and since the conversion from the Δf curve into F curve is required only once, the computational time can also be shortened. Consequently, in obtaining the short-range interaction force which acts between the atom on the sample surface and the probe, the time required for the Δf curve's measurement and the computational time are shortened, which leads to accuracy improvement and throughput enhancement.