摘要:
A steel sheet for a brake disc contains, on a mass percent basis, 0.02% or more and less than 0.10% C, 0.6% or less Si, more than 0.5% and 2.0% or less Mn, 0.06% or less P, 0.01% or less S, 0.05% or less Al, 11.0% to 13.5% Cr, 0.01% to 0.30% Ni, 0.10% to 0.60% Nb, 0.03% or more and less than 0.10% N, more than 0.0010% and 0.0060% or less B, and the balance being Fe and incidental impurities, and the steel sheet after quenching has a hardness of 32 HRC to 40 HRC on a Rockwell hardness scale C (HRC).
摘要:
A steel sheet for a brake disc contains, on a mass percent basis, 0.02% or more and less than 0.10% C, 0.6% or less Si, more than 0.5% and 2.0% or less Mn, 0.06% or less P, 0.01% or less S, 0.05% or less Al, 11.0% to 13.5% Cr, 0.01% to 0.30% Ni, 0.10% to 0.60% Nb, 0.03% or more and less than 0.10% N, more than 0.0010% and 0.0060% or less B, and the balance being Fe and incidental impurities, and the steel sheet after quenching has a hardness of 32 HRC to 40 HRC on a Rockwell hardness scale C (HRC).
摘要:
A stainless steel foil contains, in percent by mass, 0.05% or less of C, 2.0% or less of Si, 1.0% or less of Mn, 0.003% or less of S, 0.05% or less of P, 25.0% to 35.0% of Cr, 0.05% to 0.30% of Ni, 3.0% to 10.0% of Al, 0.10% or less of N, 0.02% or less of Ti, 0.02% or less of Nb, 0.02% or less of Ta, 0.005% to 0.20% of Zr, 0.02% or less of Ce, 0.03% to 0.20% of REM excluding Ce, 0.5% to 6.0% in total of at least one of Mo and W, and the balance being Fe and incidental impurities.
摘要:
A stainless steel foil contains, in percent by mass, 0.05% or less of C, 2.0% or less of Si, 1.0% or less of Mn, 0.003% or less of S, 0.05% or less of P, 25.0% to 35.0% of Cr, 0.05% to 0.30% of Ni, 3.0% to 10.0% of Al, 0.10% or less of N, 0.02% or less of Ti, 0.02% or less of Nb, 0.02% or less of Ta, 0.005% to 0.20% of Zr, 0.02% or less of Ce, 0.03% to 0.20% of REM excluding Ce, 0.5% to 6.0% in total of at least one of Mo and W, and the balance being Fe and incidental impurities.
摘要:
A chromium steel sheet having excellent press formability, particularly deep-drawing formability and resistance to secondary work brittleness. The construction is a chromium steel sheet including C: not more than 0.03 wt %, Si: not more than 1.0 wt %, Mn: not more than 1.0 wt %, P: not more than 0.05 wt %, S: not more than 0.015 wt %, Al: not more than 0.10 wt %, N: not more than 0.02 wt %, Cr: 5-60 wt %, Ti: 4(C+N)-0.5 wt %, Nb: 0.003-0.020 wt %, B: 0.0002-0.005 wt %, and, if necessary, one or more selected from Mo: 0.01-5.0 wt %, Ca: 0.0005-0.01 wt % and Se: 0.0005-0.025 wt %, and the balance being Fe and inevitable impurities.
摘要:
A material for brake discs has temper softening resistance sufficient to maintain a hardness of HRC 31 or more after tempering at 700° C. for one hour. The low-carbon martensitic chromium-containing steel contains 0.02% to 0.10% of carbon and 0.02% to 0.10% of nitrogen, the total content of carbon and nitrogen being 0.08% to 0.16%; 0.5% or less of silicon; 0.1% or less of aluminum; 0.3% to 3.0% of manganese; 10.5% to 13.5% of chromium; 0.05% to 0.60% of niobium and 0.15% to 0.80% of vanadium, the total content of niobium and vanadium being 0.25% to 0.95%; 0.02% to 2.0% of nickel; and 1.5% or less of copper, and has an Fp value (=−230C+5Si−5Mn−6Cu+10Cr−12Ni+32Nb+22V+l2Mo+8W+10Ta+40A1−220N) of 80.0 to 96.0, a hardness after quenching of HRC 31 to 40, and a hardness after tempering at 700° C. for one hour of HRC 31 or more.
摘要:
A material for brake discs has temper softening resistance sufficient to maintain a hardness of HRC 31 or more after tempering at 700° C. for one hour. The low-carbon martensitic chromium-containing steel contains 0.02% to 0.10% of carbon and 0.02% to 0.10% of nitrogen, the total content of carbon and nitrogen being 0.08% to 0.16%; 0.5% or less of silicon; 0.1% or less of aluminum; 0.3% to 3.0% of manganese; 10.5% to 13.5% of chromium; 0.05% to 0.60% of niobium and 0.15% to 0.80% of vanadium, the total content of niobium and vanadium being 0.25% to 0.95%; 0.02% to 2.0% of nickel; and 1.5% or less of copper, and has an Fp value (=−230C+5Si−5Mn−6Cu+10Cr−12Ni+32Nb+22V+12Mo+8W+10Ta+40Al−220N) of 80.0 to 96.0, a hardness after quenching of HRC 31 to 40, and a hardness after tempering at 700° C. for one hour of HRC 31 or more.
摘要:
Ferritic stainless steel is excellent in terms of both oxidation resistance and thermal fatigue resistance without adding expensive elements, such as Mo or W. The ferritic stainless steel, contains: C: 0.015 mass % or lower, Si: 1.0 mass % or lower, Mn: 1.0 mass % or lower, P: 0.04 mass % or lower, S: 0.010 mass % or lower, Cr: 16 to 23 mass % or lower, N: 0.015 mass % or lower, Nb: 0.3 to 0.65 mass %, Ti: 0.15 mass % or lower, Mo: 0.1 mass % or lower, W: 0.1 mass % or lower, Cu: 1.0 to 2.5 mass %, Al: 0.2 to 1.5 mass %, and the balance of Fe and inevitable impurities.
摘要:
Ferritic stainless steel is excellent in terms of both oxidation resistance and thermal fatigue resistance without adding expensive elements, such as Mo or W. The ferritic stainless steel, contains: C: 0.015 mass % or lower, Si: 1.0 mass % or lower, Mn: 1.0 mass % or lower, P: 0.04 mass % or lower, S: 0.010 mass % or lower, Cr: 16 to 23 mass % or lower, N: 0.015 mass % or lower, Nb: 0.3 to 0.65 mass %, Ti: 0.15 mass % or lower, Mo: 0.1 mass % or lower, W: 0.1 mass % or lower, Cu: 1.0 to 2.5 mass %, Al: 0.2 to 1.5 mass %, and the balance of Fe and inevitable impurities.
摘要:
A ferritic stainless steel contains no expensive elements such as Mo and W, is free from the oxidation resistance loss caused by addition of Cu, and thereby has excellent levels of oxidation resistance (including water vapor oxidation resistance), thermal fatigue property, and high-temperature fatigue property. The ferritic stainless steel contains, in mass %, C at 0.015% or less, Si at 0.4 to 1.0%, Mn at 1.0% or less, P at 0.040% or less, S at 0.010% or less, Cr at 16 to 23%, Al at 0.2 to 1.0%, N at 0.015% or less, Cu at 1.0 to 2.5%, Nb at 0.3 to 0.65%, Ti at 0.5% or less, Mo at 0.1% or less, and W at 0.1% or less, the Si and the Al satisfying a relation Si (%)≧Al (%).