摘要:
A solid-state imaging apparatus comprises a semiconductor substrate, a multiplicity of photo electric conversion elements, a vertical electric charge transfer device having a plurality of vertical electric charge transfer channels and transfer electrodes, reading out parts and a driving device that imposes a first voltage to the reading out electrode for reading out the accumulated signal electric charge from the photo electric conversion elements to the transfer channels in a reading out period and at a same time during the reading out period imposes a second voltage to at least one of the transfer electrodes adjoining to the reading out electrode for each photo electric conversion element for accumulating the signal electric charge in the vertical electric charge transfer channel under the one of the transfer electrode. Damage in the dynamic range of the solid-state imaging apparatus can be prevented.
摘要:
A solid-state imaging apparatus comprises a semiconductor substrate, a multiplicity of photo electric conversion elements, a vertical electric charge transfer device having a plurality of vertical electric charge transfer channels and transfer electrodes, reading out parts and a driving device that imposes a first voltage to the reading out electrode for reading out the accumulated signal electric charge from the photo electric conversion elements to the transfer channels in a reading out period and at a same time during the reading out period imposes a second voltage to at least one of the transfer electrodes adjoining to the reading out electrode for each photo electric conversion element for accumulating the signal electric charge in the vertical electric charge transfer channel under the one of the transfer electrode. Damage in the dynamic range of the solid-state imaging apparatus can be prevented.
摘要:
A solid-state imaging apparatus comprises a semiconductor substrate, a multiplicity of photo electric conversion elements, a vertical electric charge transfer device having a plurality of vertical electric charge transfer channels and transfer electrodes, reading out parts and a driving device that imposes a first voltage to the reading out electrode for reading out the accumulated signal electric charge from the photo electric conversion elements to the transfer channels in a reading out period and at a same time during the reading out period imposes a second voltage to at least one of the transfer electrodes adjoining to the reading out electrode for each photo electric conversion element for accumulating the signal electric charge in the vertical electric charge transfer channel under the one of the transfer electrode. Damage in the dynamic range of the solid-state imaging apparatus can be prevented.
摘要:
A solid-state imaging apparatus comprises a semiconductor substrate, a multiplicity of photo electric conversion elements, a vertical electric charge transfer device having a plurality of vertical electric charge transfer channels and transfer electrodes, reading out parts and a driving device that imposes a first voltage to the reading out electrode for reading out the accumulated signal electric charge from the photo electric conversion elements to the transfer channels in a reading out period and at a same time during the reading out period imposes a second voltage to at least one of the transfer electrodes adjoining to the reading out electrode for each photo electric conversion element for accumulating the signal electric charge in the vertical electric charge transfer channel under the one of the transfer electrode. Damage in the dynamic range of the solid-state imaging apparatus can be prevented.
摘要:
An inkjet recording apparatus includes: an ink holding chamber having a through hole to jet ink, and holding the ink; and a head unit jetting the ink held in the ink holding chamber from the through hole. The head unit includes an ultrasonic wave generation member, an ultrasonic wave focusing member focusing the ultrasonic waves generated at the ultrasonic wave generation member in a vicinity of the through hole, an ultrasonic wave propagation portion propagateting the ultrasonic waves leaving the ultrasonic wave focusing member, and a container portion containing the ultrasonic wave generation member, the ultrasonic wave focusing member, and the ultrasonic wave propagation portion.
摘要:
A manufacturing method of a solid-state imaging device, the device comprising: a semiconductor substrate; photodiodes each comprising a surface-side first conductivity type region formed adjacent to a surface of the semiconductor substrate and a second conductivity type region provided directly under the surface-side first conductivity type region; a second conductivity type vertical transfer region provided in the vicinity of the surface-side first conductivity type region; at least one first conductivity type inter-pixel isolation region provided under the vertical transfer region; and at least one first conductivity type overflow barrier region provided below the first conductivity type inter-pixel isolation region, the method comprising: a first step of forming the first conductivity type overflow barrier region in a semiconductor substrate; and a second step of ion-implanting first conductivity type impurity ions from a direction in which channeling tends to occur, to form at least one of the first conductivity type inter-pixel isolation region.
摘要:
A solid state image pickup device is provided which includes: charge accumulation regions disposed in a semiconductor substrate in a matrix shape; a plurality of vertical transfer channels formed in the semiconductor substrate each in a close proximity to each column of the charge accumulation regions; vertical transfer electrodes formed above the vertical transfer channels; a channel protective impurity layer formed just under the vertical transfer channel and surrounding the charge accumulation region; one or more pixel separation impurity layers formed under the channel protective impurity layer and at a position facing the channel protective impurity layer; an overflow barrier region having a peak position of an impurity concentration at a position deeper than the pixel separation impurity layer, the peak position of the impurity concentration being at a depth of 3 μm or deeper from a surface of the semiconductor substrate; and a horizontal CCD for transferring signal charges transferred from the vertical transfer channels in a horizontal direction.
摘要:
A method of manufacturing a light emitting device. The method includes: mounting a light emitting chip on a substrate; forming a transparent resin portion and a phosphor layer by using a liquid droplet discharging apparatus, the transparent resin portion being formed in a shape of a dome and covering the light emitting chip to fill an exterior thereof on the substrate, a phosphor layer containing phosphor and being formed on an exterior of the transparent resin portion close to at least a top side thereof; and forming a reflecting layer at a position exterior of the transparent resin portion and the phosphor layer close to the substrate.
摘要:
There is provided a printing device configured to eject a dispersed body containing a solid particle and a liquid. The printing device includes a film and an acoustic head. The film has a first major surface and a second major surface on an opposite side of the first major surface. The first major surface is provided with a first recess accommodating the liquid and a second recess provided on a bottom face of the first recess and accommodating the solid particle. The acoustic head focuses an acoustic wave from a side of the second major surface toward the first recess and the second recess. Thus, even in the case of discharging a dispersed body containing solid particles, it is possible to uniformize the amount of solid particles contained in ejected droplets and it is possible to uniformly make a print.
摘要:
A manufacturing method of a solid-state imaging device, the device comprising: a semiconductor substrate; photodiodes each comprising a surface-side first conductivity type region formed adjacent to a surface of the semiconductor substrate and a second conductivity type region provided directly under the surface-side first conductivity type region; a second conductivity type vertical transfer region provided in the vicinity of the surface-side first conductivity type region; at least one first conductivity type inter-pixel isolation region provided under the vertical transfer region; and at least one first conductivity type overflow barrier region provided below the first conductivity type inter-pixel isolation region, the method comprising: a first step of forming the first conductivity type overflow barrier region in a semiconductor substrate; and a second step of ion-implanting first conductivity type impurity ions from a direction in which channeling tends to occur, to form at least one of the first conductivity type inter-pixel isolation region.