摘要:
A transparent electrically-conductive hard-coated substrate of the invention comprises a transparent base material; a deposited carbon nanotubes layer formed on the transparent base material; and a cured resin layer formed on the deposited carbon nanotubes layer, wherein the deposited carbon nanotubes layer has a thickness of 10 nm or less, the total thickness of the deposited carbon nanotubes layer and the cured resin layer is 1.5 μm or more, and part of the deposited carbon nanotubes layer is diffused into the cured resin layer so that carbon nanotubes are present in the cured resin layer. The transparent electrically-conductive hard-coated substrate possesses high transparency and hard coating properties and also has electrical conductivity.
摘要:
A ceramic composite laminate includes a wavelength-converting layer and a non-emissive layer, wherein the ceramic composite laminate has a wavelength conversion efficiency (WCE) of at least 0.650. The ceramic composite laminate can also include a wavelength-converting ceramic layer comprising an emissive material and a scattering material, wherein the laminated composite has a total transmittance of between about 40% to about 85%. The wavelength-converting layer may be formed from plasma YAG:Ce powder.
摘要:
Disclosed herein are a laminated composite and process for making the same. The laminated composite includes at least one wavelength-converting layer and at least one non-emissive layer, wherein a vertical relief gap pattern defines the composite into a plurality of discrete separable portions, and the discrete separable portions are breakably joined by a non-emissive layer. Separation along the relief gap pattern reduces color variation amongst the discrete portions and processes.