摘要:
A γ1A converter circuit 1a and a γ2A converter circuit 2a to a λ1C converter circuit 1c and a γ2C converter circuit 2c use first to third types of first and second γ-characteristics to γ-convert an input video signal IS. Selectors 3 to 5 select one pair among three pairs of γ-characteristics in accordance with a transmittance to be used for display, and selects one of the six γ-corrected outputs such that both a distribution area ratio of pixels driven by the video signal as γ corrected by use of the first γ-characteristic of the selected pair of γ-characteristics and a distribution area ratio of pixels driven by the video signal as γ corrected by use of the second γ-characteristic of the selected pair of γ-characteristics are equal to a distribution area ratio specified in advance for the selected pair of γ-characteristics.
摘要:
Gamma converter circuits use first to third types of first and second gamma-characteristics to gamma-convert an input video signal. Selectors select one pair among three pairs of gamma-characteristics in accordance with a transmittance to be used for display, and selects one of the six gamma corrected outputs such that both a distribution area ratio of pixels driven by the video signal as gamma corrected by use of the first gamma-characteristic of the selected pair of gamma characteristics and a distribution area ratio of pixels driven by the video signal as γ corrected by use of the second gamma-characteristic of the selected pair of gamma-characteristics are equal to a distribution area ratio specified in advance for the selected pair of gamma-characteristics.
摘要:
A signal converting section increases a transfer rate of an input image signal to be supplied to a liquid crystal panel and, at the same time, also inserts a non-image signal for applying a predetermined voltage to liquid-crystal cells in a space of the input image signal and supplies it as a picture-element signal to a source driver. To each picture cell, an input image signal and a non-image signal are sequentially written with positive or negative polarity. For all picture elements, after the input image signal is written, the non-image signal equal in polarity to the input image signal is always written. Furthermore, after the non-image signal is written, an image signal opposite in polarity to the non-image signal is always written. Thus, when an image is displayed on the liquid crystal panel in OCB mode, it is possible to prevent the occurrence of back transition and carry out image display evenly.
摘要:
A liquid crystal display apparatus is provided with a detecting section (108) for detecting a value of a parameter that causes fluctuations in a back transition occurrence condition; a calculating section (106) for determining, in accordance with the detection value of the detecting section, at least one of a ratio of an time period of applying a high voltage with respect to one frame period, the high voltage being applied to the liquid crystal panel in order to prevent back transition, a magnitude of the high voltage, and an applied voltage corresponding to white display; and a controller (104) for alternately outputting a video signal and a non-image signal for applying the high voltage and driving the liquid crystal panel on a condition in accordance with the determination result of the calculating section. With this, it is possible to always display video irrespectively of fluctuation in the back transition occurrence condition.
摘要:
A frequency converting section (101), which is included in a liquid crystal display apparatus, generates an output video signal by inserting one non-image signal, which is to be concurrently written into pixels on L (L is an integer equal to or greater than two) gate lines of the liquid crystal panel, for one line, between image signals composing an input video signal, for corresponding L lines, and adjusting a number of horizontal scanning periods of the output video signal in a vertical blanking period so that a number of horizontal scanning periods composing one frame period is (L+1)×(2N+1) (N is an integer). Thus, when anti-back-transition driving is performed using a liquid crystal panel in OCB mode, it is possible to minimize increase in a driving frequency, prevent irregularity of brightness caused by AC driving of the liquid crystal panel, and reduce a cost.
摘要:
A liquid crystal display device capable of suppressing the occurrence of a back transition in OCB cells and displaying excellent images as well as a driving method thereof are provided. One frame period has a first period P1 for writing a signal for initializing the state of a liquid crystal in pixel cells and a second period for writing pixel data in correspondence with an image signal in pixel cells, and a voltage level to be applied to each pixel cell is set in the first period such that each pixel cell retains a voltage Vsup higher than that in the second period.
摘要:
A signal converting section increases a transfer rate of an input image signal to be supplied to a liquid crystal panel and, at the same time, also inserts a non-image signal for applying a predetermined voltage to liquid-crystal cells in a space of the input image signal and supplies it as a picture-element signal to a source driver. To each picture cell, an input image signal and a non-image signal are sequentially written with positive or negative polarity. For all picture elements, after the input image signal is written, the non-image signal equal in polarity to the input image signal is always written. Furthermore, after the non-image signal is written, an image signal opposite in polarity to the non-image signal is always written. Thus, when an image is displayed on the liquid crystal panel in OCB mode, it is possible to prevent the occurrence of back transition and carry out image display evenly.
摘要:
A liquid crystal display device includes a signal conversion part (101), a drive pulse generation part (102), a source driver (103), a gate driver (1704), and a multiplexer part (1706). In addition, between the source driver (103) and a display region part (1705) there is provided an intersection part (204) where, when source lines (S1, S2, S3, S4, . . . ) in the display region part are divided into groups each including four source lines, lines that correspond to two source lines (S2 and S3) located the second and third from an end in each group intersect each other. With the liquid crystal display device using the multiplexer part for switching a plurality of source lines in a time-sharing manner, the degradation of the display quality of pixels caused by, for example, an insufficient writing capability to the pixels is improved.
摘要:
A liquid crystal display device includes a signal conversion part (101), a drive pulse generation part (102), a source driver (103), a gate driver (1704), and a multiplexer part (1706). In addition, between the source driver (103) and a display region part (1705) there is provided an intersection part (204) where, when source lines (S1, S2, S3, S4, . . . ) in the display region part are divided into groups each including four source lines, lines that correspond to two source lines (S2 and S3) located the second and third from an end in each group intersect each other. With the liquid crystal display device using the multiplexer part for switching a plurality of source lines in a time-sharing manner, the degradation of the display quality of pixels caused by, for example, an insufficient writing capability to the pixels is improved.
摘要:
A signal converting section increases a transfer rate of an input image signal to be supplied to a liquid crystal panel and, at the same time, also inserts a non-image signal for applying a predetermined voltage to liquid-crystal cells in space of the input image signal and supplies it as a picture-element signal to a source driver. To each picture cell, an input image signal and a non-image signal are sequentially written with positive or negative polarity. For all picture elements, after the input image signal is written, the non-image signal equal in polarity to the input image signal is always written. Furthermore, after the non-image signal is written, an image signal opposite in polarity to the non-image signal is always written. Thus, when an image is displayed on the liquid crystal panel in OCB mode, it is possible to prevent the occurrence of back transition and carry out image display evenly.