Abstract:
An image-pickup apparatus for capturing an object includes a distance calculating unit for measuring a phase difference (time difference) from the emission of light from a light emitting unit to the reception of reflected light by a light receiving unit for each unit composed of a predetermined number of adjacent pixels of the object to calculate a distance from the image-pickup apparatus to each corresponding pixel unit of the object, and an image processing unit for corresponding the distance calculated in units of the predetermined number of pixels to the image captured by the light receiving unit. The image processing unit supplies a display unit with only pixels corresponding to a predetermined range in the image generated by the distance calculating unit to display the pixels in units of the predetermined number of pixels on the display unit.
Abstract:
An image-pickup apparatus for capturing an object includes a distance calculating unit for measuring a phase difference (time difference) from the emission of light from a light emitting unit to the reception of reflected light by a light receiving unit for each unit composed of a predetermined number of adjacent pixels of the object to calculate a distance from the image-pickup apparatus to each corresponding pixel unit of the object, and an image processing unit for corresponding the distance calculated in units of the predetermined number of pixels to the image captured by the light receiving unit. The image processing unit supplies a display unit with only pixels corresponding to a predetermined range in the image generated by the distance calculating unit to display the pixels in units of the predetermined number of pixels on the display unit.
Abstract:
A method and apparatus for transmitting a signal between a television camera and a video apparatus. When time-division multiplexing parallel image signals and transmitting them as a serial signal from the camera side to the video apparatus side, a control signal destined from the camera to the video apparatus is also time-division multiplexed. Furthermore, a plurality of kinds of trigger signals may be time-division multiplexed into one serial signal and transmitted from the video apparatus to the camera.
Abstract:
Drain holes are arranged in positions offset from valve holes of a valve body. The drain holes have a long chimney-shaped space such that even if insulation material, that has peeled off of an electric motor, is suspended in oil, it is less likely to enter drain chambers through the drain holes.
Abstract:
A hydraulic control apparatus for a transmission includes a line pressure regulating device that enables control in which an oil pressure from an oil pump is regulated so as to attain a line pressure, and that enables control in which the line pressure is switched stepwise between a low pressure state in a lower pressure range and a high pressure state in a higher pressure range; a plurality of hydraulic servos that engage and disengage friction engaging elements using engagement pressures that are based on the line pressure; and a high pressure state detecting device that detects that the line pressure regulating device is outputting the line pressure in the high pressure state.
Abstract:
Drain holes are arranged in positions offset from valve holes of a valve body. The drain holes have a long chimney-shaped space such that even if insulation material, that has peeled off of an electric motor, is suspended in oil, it is less likely to enter drain chambers through the drain holes.
Abstract:
A failsafe hydraulic circuit designed to avoid simultaneous engagement of two friction engagement elements (e.g., clutches, brakes, etc.) incorporated in a speed change apparatus of a motor vehicle or the like. If a first failsafe valve is in the open position state and a first engaging pressure is supplied to a first hydraulic servo via the first failsafe valve, the first engaging pressure is also input to a first oil pressure switch via a second failsafe valve being in the closed position state. Therefore, using the first oil pressure switch, it can be detected that the first engaging pressure is supplied to the first hydraulic servo. Furthermore, if the first engaging pressure is, for example, greater than the set pressure of the first oil pressure switch, this situation can also be detected. Such detections provide confirmation of normal operation of the first failsafe valve and the second failsafe valve.
Abstract:
A hydraulic control apparatus for a transmission includes a line pressure regulating device that enables control in which an oil pressure from an oil pump is regulated so as to attain a line pressure, and that enables control in which the line pressure is switched stepwise between a low pressure state in a lower pressure range and a high pressure state in a higher pressure range; a plurality of hydraulic servos that engage and disengage friction engaging elements using engagement pressures that are based on the line pressure; and a high pressure state detecting device that detects that the line pressure regulating device is outputting the line pressure in the high pressure state.
Abstract:
A failsafe hydraulic circuit designed to avoid simultaneous engagement of two friction engagement elements (e.g., clutches, brakes, etc.) incorporated in a speed change apparatus of a motor vehicle or the like. If a first failsafe valve is in the open position state and a first engaging pressure is supplied to a first hydraulic servo via the first failsafe valve, the first engaging pressure is also input to a first oil pressure switch via a second failsafe valve being in the closed position state. Therefore, using the first oil pressure switch, it can be detected that the first engaging pressure is supplied to the first hydraulic servo. Furthermore, if the first engaging pressure is, for example, greater than the set pressure of the first oil pressure switch, this situation can also be detected. Such detections provide confirmation of normal operation of the first failsafe valve and the second failsafe valve.
Abstract:
A vehicle hydraulic control device for driving a parking rod to a parking disengagement position and a parking engagement position, and switching a shift range at least between a parking range and a non-parking range by switching an engagement state of a parking gear and a parking pole. The vehicle hydraulic control device includes a parking cylinder and a switch valve. The parking cylinder receives an oil pressure for driving the parking rod to the parking disengagement position. The switch valve is driven based on an electric actuator and switches an operation state between a parking disengagement state in which a source pressure from an oil pressure supply source is supplied to the parking cylinder as a disengagement pressure for disengaging the parking gear and the parking pole from each other, and a parking engagement state in which the disengagement pressure is not supplied to the parking cylinder.