摘要:
A process for producing refined methacrylic acid comprising the steps of oxidizing methacrolein and the like catalytically in a vapor phase to form a methacrylic acid-containing gas, cooling and condensing the gas to an aqueous methacrylic acid solution, adding to the solution an organic solvent that forms two liquid phases with water to carry out an extraction operation and thereby to obtain an extract, bringing the extract into contact with water to mix them together, separating the mixture into an organic phase and a water phase, and distilling the organic phase. According to this process, highly refined methacrylic acid containing little dibasic acids such as maleic acid and citraconic acid can be obtained economically and without increasing wastes that are unrecoverable to the process.
摘要:
A process is provided for the purification of methacrylic acid. The process can easily remove dibasic acids and aldehydes containing in trace amounts as impurities. According to the process, crude methacrylic acid obtained as an aqueous solution by vapor-phase catalytic oxidation of isobutylene, tertiary butanol, methacrolein or isobutyl aldehyde is treated with at least one compound selected from the group consisting of m-aminophenol, m-phenylenediamine, 2,4-diaminotoluene and 2,4-diamino-diphenylamine, followed by distillation, optionally, in the presence of a p-phenylene diamine.
摘要:
In order to recover methacrolein and/or methacrylic acid by quenching a reaction product gas obtained by catalytic oxidation of isobutylene or the like, the reaction product gas is charged into a quench column through a double-wall pipe and is then brought into contact with a condensate as a cooling medium. Deposition of terephthalic acid and the like inside the column is prevented by controlling the temperature of a bottom in the quench column and that of an overhead gas of a quench column unit. An aromatic carboxylic acid, aromatic aldehyde, metal powder is added to an aqueous solution of methacrylic acid, which contains terephthalic acid and the like, so that the terephthalic acid and the like are caused to precipitate for their removal.
摘要:
A corrosion resistant zirconium alloy for use as a nuclear reactor cladding material. This alloy consists essentially of, on a weight % basis 0.02-1.7 % Sn, 0.19-0.6% Fe, 0.07-0.4% Cr, 0.01-0.2% Ta, and optionally 0.05 up to less than 0.5% Nb, the balance being Zr and incidental impurities, provided that the content of the nitrogen in the form of incidental impurities is no more than 60 ppm.
摘要:
This invention provides a method for the prevention of oxidation of resulting methacrolein immediately after its discharge from a reaction tube upon production of the methacrolein by vapor-phase oxidation of isobutylene, tertiary butanol or methallyl alcohol with a molecular-oxygen-containing gas in the presence of a catalyst. An inert gas and/or recirculated reaction gas or a mixed gas of an inert gas and/or recirculated reaction gas and air is fed and mixed with a reaction product gas immediately after an outlet of the reaction tube.
摘要:
A fuel rod for a light water reactor comprises a cladding tube which comprises a zirconium alloy having a composition including 0.6 to 2.0% by weight of Nb, 0.5 to 1.5% by weight of Sn, 0.05 to 0.3% by weight of Fe, and the balance being Zr and incidental impurities; uranium oxide fuel pellets packed in the cladding tube; and end plugs closing both ends of the cladding tube. The cladding tube is sealed by TIG welding with the end plugs. Precipitates having grain diameters of 0.01 to 0.5 .mu.m and comprise intermetallic compounds containing Zr, Nb and Fe are present at grain boundaries in the structure of heat affected zones of the cladding tube, the heat affected zone being adjacent to a bead formed by TIG welding.
摘要:
A zirconium alloy that has sufficient corrosion resistance, strength and stress relaxation property for use as a component of a pressurized water nuclear reactor fuel assembly is disclosed. This alloy consists essentially of 0.2 to 0.91% Sn, 0.18 to 0.6% Fe, 0.07 to 0.4% Cr, one or both of 0.05 to less than 0.5% and 0.01 to 0.2% Ta, one or both of 0.05 to 1% V and 0.05 to 1% Mo, with the balance being Zr and incidental impurities, all percentages being based on weight.
摘要:
[Problems] Miniaturization and weight-saving of a fuel cell including a plurality of unit cells are intended together with higher integration of the unit cells. [Means for Solving Problems] A pair of electrode sheet 100a, 100b, each having a plurality of fuel electrodes 110a, 110b or a plurality of oxidant electrodes 112a, 112b supported by a resin section 102, are disposed on a single plane on the respective surfaces of a solid electrolyte membrane 105 to configure a plurality of unit cells. The fuel electrode and the oxidant electrode of the adjacent two unit cells existing on the respective surfaces of the solid electrolyte membrane are connected in series by using an electroconductive member penetrating the solid electrolyte membrane. Since the electroconductive member 108 extends along the stacking direction of the cell, no excess space is required to achieve the miniaturization of the fuel cell.
摘要:
A zirconium alloy for use in spacer grids for nuclear reactor fuel claddings, which consists essentially of, on a weight percent basis,2.5 to 10% Nb,0.01 to 1.5% of one or more components selected from the group consisting of Y and rare earth elements and oxides thereof,0.05 to 1% of one or more optional element selected from the group consisting of Fe, Cr, Mo and V, andthe remainder Zr and incidental impurities.
摘要:
A composite porous body, a gas diffusion layer member of a polymer electrolyte fuel cell, a cell member for the polymer electrolyte fuel cell, and manufacturing methods thereof are provided. The composite porous body is a metallic composite porous body in which a sheet-like metal portion composed of a composite porous body having a three-dimensional mesh structure and a resin portion extending in an in-plane direction of the metal portion are integrally formed with each other. The gas diffusion layer member of a polymer electrolyte fuel cell is composed of a composite porous body in which a sheet-like metal portion composed of a composite porous body having a three-dimensional mesh structure and a resin portion extending in an in-plane direction of the metal portion are integrally formed with each other. Also, the gas diffusion layer member of a polymer electrolyte fuel cell has a separator plate, and the conductive porous body placed on at least one surface of the separator plate. A resin frame is integrally provided so as to cover the peripheries of separator plate and the conductive porous body.