摘要:
Providing porous implant material having a strength property approximate to human bone, without arising stress shielding, and which is possible to maintain sufficient bound strength with human bone. Porous implant material has a porous metal body having a three-dimensional network structure formed from a continuous skeleton 2 in which a plurality of pores 3 are interconnected, wherein a porosity rate is 50% to 92%, the pores 3 are formed to have flat shapes which are long along a front surface and short along a direction orthogonal to the front surface, lengths Y of the pores 3 along the front surface are 1.2 times to 5 times of a length X orthogonal to the front surface, and a compressive strength compressing in the direction parallel to the front surface is 1.4 times to 5 times of a compressive strength compressing in the direction orthogonal to the front surface.
摘要:
A bent glass sheet shaping method which is capable of reducing occurrence of visibility distortions and a bent glass sheet with reduced visibility distortions. A glass sheet is heated to a shapeable temperature, a cover material is mounted onto a press die such that a direction of waves in the cover material is diagonal to a direction of distortions in the glass sheet, and the heated glass sheet with the press die is pressed.
摘要:
A wire for welding Ni-based heat resistant alloy, comprising: a composition containing, in mass %, Cr: 14.0 to 21.5%, Co: 6.5 to 14.5%, Mo: 6.5 to 10.0%, W: 1.5 to 3.5%, Al: 1.2 to 2.4%, Ti: 1.1 to 2.1%; Fe: 7.0% or less, B: 0.0001 to 0.020%, C: 0.03 to 0.15%, and a balance of Ni and unavoidable impurities, wherein a content of S and P contained in the unavoidable impurities is controlled to be, in mass %, S: 0.004% or less, and P: 0.010% or less, wherein the wire has a texture in which M6C type carbide and MC type carbide are uniformly dispersed in the matrix.
摘要:
A fuel cell includes electrode sheets composed of an electrically conductive porous body composed by a sheet member having a framework having a three-dimensional mesh structure containing pores, a catalyst layer formed on one side thereof, and a resin portion integrally formed on an outer peripheral edge; the electrically conductive porous body has a current collection portion formed in a portion thereof having a laminated structure consisting of a plurality of sheet members, and the pores in each sheet member of the current collection portion are formed to be pressed flatter than the pores of other portions; a resin penetrates into pores within the electrically conductive porous body at bound portions of the resin portion and the electrically conductive porous body; and, among a plurality of unit cells A and B, at least a portion thereof are connected in series by means of an electrically conductive member that passes through an electrolyte membrane from the current collection portion of the electrically conductive porous body.
摘要:
A composite porous body, a gas diffusion layer member of a polymer electrolyte fuel cell, a cell member for the polymer electrolyte fuel cell, and manufacturing methods thereof are provided. The composite porous body is a metallic composite porous body in which a sheet-like metal portion composed of a composite porous body having a three-dimensional mesh structure and a resin portion extending in an in-plane direction of the metal portion are integrally formed with each other. The gas diffusion layer member of a polymer electrolyte fuel cell is composed of a composite porous body in which a sheet-like metal portion composed of a composite porous body having a three-dimensional mesh structure and a resin portion extending in an in-plane direction of the metal portion are integrally formed with each other. Also, the gas diffusion layer member of a polymer electrolyte fuel cell has a separator plate, and the conductive porous body placed on at least one surface of the separator plate. A resin frame is integrally provided so as to cover the peripheries of separator plate and the conductive porous body.
摘要:
Porous implant material having a plurality of metal bodies having different porosity rates which are bonded with each other at bonded-boundary surface F parallel to a first direction, wherein: a bonded body of the metal bodies has an entire porosity rate of 50% to 92%; the metal body having higher porosity rate is a porous metal body having a three-dimensional network formed from a continuous skeleton in which a plurality of pores are interconnected; the metal body having lower porosity rate has a porosity rate of 0 to 50% and an area-occupation rate of 0.5% to 50% in a cross-section surface orthogonal to an axial direction which agrees with the first direction along the bonded-boundary surface; and a compressive strength compressing in a direction parallel to the bonded-boundary surface is 1.4 times to 10 times of a compressive strength compressing in a direction orthogonal to the bonded-boundary surface.
摘要:
A bent glass sheet shaping method which is capable of reducing occurrence of visibility distortions and a bent glass sheet with reduced visibility distortions. A glass sheet is heated to a shapeable temperature, a cover material is mounted onto a press die such that a direction of waves in the cover material is diagonal to a direction of distortions in the glass sheet, and the heated glass sheet with the press die is pressed.
摘要:
[Problems] Miniaturization and weight-saving of a fuel cell including a plurality of unit cells are intended together with higher integration of the unit cells. [Means for Solving Problems] A pair of electrode sheet 100a, 100b, each having a plurality of fuel electrodes 110a, 110b or a plurality of oxidant electrodes 112a, 112b supported by a resin section 102, are disposed on a single plane on the respective surfaces of a solid electrolyte membrane 105 to configure a plurality of unit cells. The fuel electrode and the oxidant electrode of the adjacent two unit cells existing on the respective surfaces of the solid electrolyte membrane are connected in series by using an electroconductive member penetrating the solid electrolyte membrane. Since the electroconductive member 108 extends along the stacking direction of the cell, no excess space is required to achieve the miniaturization of the fuel cell.
摘要:
An image synthesizing apparatus, an image synthesizing method and an information storage medium which can realize the representation of the front and back sides of a primitive surface while decreasing processing load. Whether the front or back side of a polygon (primitive surface) is to be displayed on a screen is judged. When the front side of the polygon is to be displayed, a first texture is mapped (on the polygon). On the other hand, if the back side of the polygon is to be displayed, a second texture is mapped (on the polygon). Thus, a realistic representation can be accomplished without increasing processing load. Depending on whether the front or back side of the polygon is to be displayed, various image information such as color palette, vertex brightness information, normal vector information lighting model parameter information and transparency information may be varied.
摘要:
The present invention is geared to provide a polygon data conversion device and three-dimensional simulator apparatus capable of efficiently using hardware that cannot form backface polygons. A coordinate inversion section (410) performs horizontally and vertically inverts the vertex coordinates of an input polygon based on horizontal and vertical inversion flags. A back-and-front determination section (408) determines whether the input polygon is a backface or frontface polygon, by checking the sequence of numbers allocated to the vertices. An allocation sequence switching section (420) switches this allocation sequence based on an exclusive OR of the back determination flag, horizontal inversion flag, and vertical inversion flag. A vertex number assignment section (422) assigns the vertex numbers of the original input polygon to polygonal segments of that polygon. Data such as the vertex coordinates and reversed vertex coordinates of this polygon is read from a data memory (412) in accordance with these vertex numbers.