摘要:
An anion exchange membrane includes a quaternary ammonium salt group in which two methyl groups, and one alkyl group having 3 to 8 carbon atoms are bonded to a nitrogen atom.
摘要:
An object is to provide an electrolyte membrane that maintains excellent cell characteristics for a long time under high temperature and low water retention, as this is the most important point in fuel cells.A process for producing a polymer electrolyte membrane for fuel cells is provided, which process comprises in sequence: forming graft molecular chains by graft-polymerization of a vinyl silane coupling agent on a polymer film substrate that has phenyl groups capable of holding sulfonic acid groups; introducing sulfonic acid groups into phenyl groups contained in the graft molecular chains; and hydrolyzing and condensing alkoxy groups contained in the graft molecular chains so that a silane crosslinked structure is introduced between the graft molecular chains. A polymer electrolyte membrane produced by the process is also provided.
摘要:
An object is to provide an electrolyte membrane that maintains excellent cell characteristics for a long time under high temperature and low water retention, as this is the most important point in fuel cells.A process for producing a polymer electrolyte membrane for fuel cells is provided, which process comprises in sequence: forming graft molecular chains by graft-polymerization of a vinyl silane coupling agent on a polymer film substrate that has phenyl groups capable of holding sulfonic acid groups; introducing sulfonic acid groups into phenyl groups contained in the graft molecular chains; and hydrolyzing and condensing alkoxy groups contained in the graft molecular chains so that a silane crosslinked structure is introduced between the graft molecular chains. A polymer electrolyte membrane produced by the process is also provided.
摘要:
A vinyl monomer is graft polymerized on an aromatic hydrocarbon-based polymer film substrate to introduce graft chains into the substrate and thereafter a functional monomer represented by the following formula and having sulfonic acid groups or functional groups capable of conversion to sulfonic acid groups is graft polymerized to introduce the sulfonic acid groups or the functional groups capable of conversion to sulfonic acid groups: where R is an aromatic ring or an aliphatic chain; X is (1) —OH, (2) —OLi, —ONa or —OK, (3) —F or —Cl, or (4) —OCnH2n+1 where n is an integer of 1 to 7. Since the graft chains obtained by graft polymerization of the vinyl monomer can also be utilized as scaffold polymers, the graft polymerizability of the functional monomer to the aromatic hydrocarbon-based polymer film substrate is sufficiently improved to enable the preparation of a polymer electrolyte membrane that excels not only in proton conductivity and mechanical strength but also in dimensional stability.
摘要:
An aromatic polymer film substrate, or a grafted aromatic polymer film substrate having a monomer introduced therein as graft chains is irradiated with ionizing radiation to impart a crosslinked structure. The aromatic polymer film substrate or the grafted aromatic polymer film substrate, provided with the crosslinked structure, is directly sulfonated to obtain a crosslinked aromatic polymer electrolyte membrane. The crosslinked aromatic polymer electrolyte membrane has low water uptake, high proton conductivity, low methanol permeability, high chemical stability, and excellent mechanical characteristics.
摘要:
The process for producing a proton conductive polymer electrolyte membrane of the present invention includes the steps of: irradiating resin fine particles with radiation; graft-polymerizing a vinyl monomer having a sulfonic acid group precursor and a vinyl monomer having a carbonyl group equivalent with the resin fine particles in a solid-liquid two-phase system to obtain a finely particulate graft polymer; preparing a casting solution of a polymer having a phosphoric acid group or a phosphonic acid group and the graft polymer, and forming a cast membrane from this solution; drying the cast membrane to obtain a film; converting the sulfonic acid group precursor into a sulfonic acid group; and forming a crosslinked structure between the carbonyl group equivalents. In the solid-liquid two-phase system, a liquid phase includes the vinyl monomers and a solvent for the monomers, and a solid phase includes the resin fine particles. By this process, a proton conductive polymer electrolyte membrane having high oxidation resistance, and a process capable of producing this membrane industrially are provided.
摘要:
By performing photograft polymerization of functional monomers such that grafted chains will be introduced from the surface of a polymer base film into its interior without deteriorating its inherent characteristics and also by creating a multiplex crosslinked structure between the grafted chains and the base film under such conditions as to cause preferential radiation-induced crosslinking reaction, there is produced a polymer electrolyte membrane having high enough oxidation resistance and proton conductivity to be suitable for use in fuel cells.
摘要:
By performing photograft polymerization of functional monomers such that grafted chains will be introduced from the surface of a polymer base film into its interior without deteriorating its inherent characteristics and also by creating a multiplex crosslinked structure between the grafted chains and the base film under such conditions as to cause preferential radiation-induced crosslinking reaction, there is produced a polymer electrolyte membrane having high enough oxidation resistance and proton conductivity to be suitable for use in fuel cells.
摘要:
The present invention relates to a thermostable polymer electrolyte membrane which comprises a main chain comprising an alicyclic polybenzimidazole and a graft chain added to the main chain by radiation-induced graft polymerization, wherein at least a part of the graft chain has sulfonic acid groups. The thermostable polymer electrolyte membrane of the invention is used for many apparatuses such as polymer electrolyte fuel cells or water electrolysis devices, in which the electrolyte membrane exhibits high proton conductivity, low fuel permeability, high oxidation resistance and superior mechanical property under operation conditions at high temperature. The present invention also provides a simple and low-cost process for producing the same.
摘要:
An aromatic polymer film substrate, or a grafted aromatic polymer film substrate having a monomer introduced therein as graft chains is irradiated with ionizing radiation to impart a crosslinked structure. The aromatic polymer film substrate or the grafted aromatic polymer film substrate, provided with the crosslinked structure, is directly sulfonated to obtain a crosslinked aromatic polymer electrolyte membrane. The crosslinked aromatic polymer electrolyte membrane has low water uptake, high proton conductivity, low methanol permeability, high chemical stability, and excellent mechanical characteristics. A method for producing the crosslinked aromatic polymer electrolyte membrane is also provided.