摘要:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.
摘要:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.
摘要:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.
摘要:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.
摘要:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.
摘要:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.
摘要:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.
摘要:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.
摘要:
The present invention is a method of manufacturing a liquid crystal display device, wherein light having an exposure energy is irradiated on the surface of a photo-sensitive resin layer having a predetermined film thickness, and a distribution of thermal deformation characteristics in the thickness direction (or the plane direction) of the photo-sensitive resin layer is formed, then heat treatment is performed to form random undulation (micro-grooves or micro-wrinkles) on the surface of the photo-sensitive resin layer.
摘要:
The invention relates to a backlight unit for liquid crystal displays, etc.; and its object is to provide a backlight unit not involving the problem that the emitted light leaks out of the optical waveguide, even when the space around the cold-cathode tubes in the light source unit for it is filled with a liquid of which the refractive index is nearly the same as that of the glass material that forms the outer wall of the cold-cathode tubes. The backlight unit comprises a housing 6 which houses cold-cathode tubes 2, 4 therein and of which the inner surface is coated with a light reflector 10; a transparent liquid filled in the housing 6; and an optical waveguide 1 made of a transparent substance and having a light-emitting surface S. The reflective surface of the light reflector 10 has a cross-section profile of X-T-U-V-W-Y, on which the light emitted by the cold-cathode tubes 2, 4 is reflected, and the thus-reflected light is led to the light-emitting surface S of the optical waveguide 1 at an incident angle not smaller than the critical angle to the surface S.