摘要:
A diamond film is deposited in the thickness of 20 &mgr;m on a silicon wafer 0.8 mm thick by filament CVD. Here the hydrogen content of the diamond film is adjusted in the range of not less than 1% nor more than 5% in atomic percent. By mechanical polishing with a grinding wheel including diamond abrasives, the diamond film is smoothed so that the arithmetic mean roughness (Ra) of the surface thereof becomes not more than 20 nm.
摘要:
The invention offers a hard carbon film and a SAW substrate that are easy to fabricate or low in manufacturing cost while virtually maintaining the quality that affects the important properties of a device that comprises the hard carbon film or the SAW substrate. The hard carbon film comprises a composite film of graphite-like diamond and carbon clusters; the composite film has a continuous crystal structure.
摘要:
Surfaces of diamond crystals are examined by coating the surfaces with thin metal films, launching laser beams to the diamond surfaces in a slanting angle, detecting defects and particles on the diamond surfaces by the scattering of beams and counting the defects and particles by a laser scanning surface defect detection apparatus. Diamond SAW devices should be made on the diamond films or bulks with the defect density less than 300 particles cm−2. Preferably, the diamond surfaces should have roughness less than Ra20 nm. Diamond SAW filters can be produced by depositing a piezoelectric film and making interdigital transducers on the low-defect density diamond crystals.
摘要:
The invention offers a hard carbon film and a SAW substrate that are easy to fabricate or low in manufacturing cost while virtually maintaining the quality that affects the important properties of a device that comprises the hard carbon film or the SAW substrate. The hard carbon film comprises a composite film of graphite-like diamond and carbon clusters; the composite film has a continuous crystal structure.
摘要:
Surfaces of diamond crystals are examined by coating the surfaces with thin metal films, launching laser beams to the diamond surfaces in a slanting angle, detecting defects and particles on the diamond surfaces by the scattering of beams and counting the defects and particles by a laser scanning surface defect detection apparatus. Diamond SAW devices should be made on the diamond films or bulks with the defect density less than 300 particles cm−2. Preferably, the diamond,surfaces should have roughness less than Ra20 nm. Diamond SAW filters can be produced by depositing a piezoelectric film and making interdigital transducers on the low-defect density diamond crystals.
摘要:
Surfaces of diamond crystals are examined by coating the surfaces with thin metal films, launching laser beams to the diamond surfaces in a slanting angle, detecting defects and particles on the diamond surfaces by the scattering of beams and counting the defects and particles by a laser scanning surface defect detection apparatus. Diamond SAW devices should be made on the diamond films or bulks with the defect density less than 300 particles cm−2. Preferably, the diamond surfaces should have roughness less than Ra20 nm. Diamond SAW filters can be produced by depositing a piezoelectric film and making interdigital transducers on the low-defect density diamond crystals.
摘要:
A first surface acoustic wave device for 2nd mode surface acoustic wave of a wavelength .lambda. (.mu.m) according to the present invention is a SAW device of "type A" device shown in FIG. 6A, wherein a parameter kh3=2.pi.(t.sub.A /.lambda.) is: 0.033.ltoreq.kh3.ltoreq.0.099, and wherein a parameter kh1=2.pi.(t.sub.Z /.lambda.) and a parameter kh2=2.pi.(t.sub.S /.lambda.) are given within a region ABCDEFGHIJKLA in a two-dimensional Cartesin coordinate graph of FIG. 1.
摘要:
A method for separating chips from a diamond wafer comprising a substrate, a chemically vapor-deposited diamond layer, and microelectronic elements, with the microelectronic elements protected from thermal damage and degradation caused by the thermally decomposed cuttings produced during the processing steps. (1) Front-side grooves 6 are formed on the chemically vapor-deposited diamond layer 2 by laser processing using a laser such as a YAG, CO2, or excimer laser each having a large output so that the grooves 6 can have a depth 1/100 to 1.5 times the thickness of the diamond layer. (2) The thermally decomposed cuttings produced during the laser processing are removed by using a plasma. (3) Back-side grooves 9 are formed on the substrate 1 by dicing such that the back-side grooves 9 are in alignment with the front-side grooves 6. (4) The diamond wafer 4 is divided into individual chips 10 by applying mechanical stresses.
摘要:
A surface acoustic wave (SAW) device that is suitable for mass production and that has excellent operational performance at the superhigh-frequency range. The SAW device comprises (a) a diamond layer 3; (b) a ZnO layer 4, with a thickness of tz, formed on the diamond layer 3; (c) interdigital transducers (IDTs) 5, which excite and receive a SAW, formed on the ZnO layer 4; and (d) an SiO2 layer 6, with a thickness of ts, formed on the ZnO layer 4 so that the SiO2 layer can cover the IDTs 5. The structure of the SAW device is determined by specific numeric ranges of the parameters kh1 and kh2, which are given in equations kh1=3·2&pgr;·(tz/&lgr;) and kh2=3·2&pgr;·(ts/&lgr;), where &lgr; signifies the wavelength of the fundamental wave of the second Sezawa mode of the SAW. The SAW device uses the third harmonic of the second Sezawa mode of the SAW excited.
摘要:
A diamond base material for surface acoustic wave device, which includes: a low-resistivity base material, and a high-resistivity diamond layer having a thickness of 5-50 .mu.m disposed on the low-resistivity base material.