摘要:
Affords GaxIn1-xN substrates onto which high-quality epitaxial films can be stably grown, and cleaning methods for manufacturing the GaxIn1-xN substrates. GaxIn1-xN substrate in which the number of particles of not less than 0.2 μm particle size present on the GaxIn1-xN substrate surface is 20 or fewer, given that the GaxIn1-xN substrate diameter is 2 inches. Furthermore, a GaxIn1-xN substrate in which, in a photoelectron spectrum along the surface by X-ray photoelectron spectroscopy at a take-off angle of 10°, the ratio between the peak areas of the C1s electron and N1s electron (C 1s electron peak area/N 1s electron peak area) is not greater than 3.
摘要翻译:提供可稳定生长高品质外延膜的GaxIn1-xN基板,以及用于制造GaxIn1-xN基板的清洗方法。 考虑到GaxIn1-xN基板直径为2英寸,GaxIn1-xN基板在GaxIn1-xN基板表面上存在不少于0.2μm粒径的颗粒数为20个以下的GaxIn1-xN基板。 此外,GaxIn1-xN衬底,其中,在以10°的起飞角通过X射线光电子能谱分析的沿着表面的光电子光谱中,C1s电子和N1s电子的峰面积之比(C 1s电子 峰面积/ N 1s电子峰面积)不大于3。
摘要:
An AlxGayIn1-x-yN crystal substrate of the present invention has a main plane having an area of at least 10 cm2. The main plane has an outer region located within 5 mm from an outer periphery of the main plane, and an inner region corresponding to a region other than the outer region. The inner region has a total dislocation density of at least 1×102 cm−2 and at most 1×106 cm−2. It is thereby possible to provide an AlxGayIn1-x-yN crystal substrate having a large size and a suitable dislocation density for serving as a substrate for a semiconductor device, a semiconductor device including the AlxGayIn1-x-yN crystal substrate, and a method of manufacturing the same.
摘要翻译:本发明的Al x Ga y In 1-x-y N晶体基板具有面积为至少10cm 2的主平面。 主平面具有位于与主平面的外周5mm以内的外部区域和与外部区域以外的区域对应的内部区域。 内部区域的总位错密度为1×102cm 2以上且1×10 6 cm -2以下。 由此,可以提供具有大尺寸和合适的位错密度的Al x Ga y In 1-x-y N晶体基板,用作半导体器件的基板,包括Al x Ga y In 1-x-y N晶体基板的半导体器件,以及 制造相同。
摘要:
It seems that a conventional method for producing a GaN crystal by using HVPE has a possibility that the crystallinity of a GaN crystal can be improved by producing a GaN crystal at a temperature higher than 1100° C. However, such a conventional method has a problem in that a quartz reaction tube (1) is melted when heated by heaters (5) and (6) to a temperature higher than 1100° C.Disclosed herein is a method for producing a GaxIn1-xN (0≦x≦1) crystal (12) by growing GaxIn1-xN (0≦x≦1) crystal (12) on the surface of a base substrate (7) by the reaction of a material gas, containing ammonia gas and at least one of a gallium halide gas and an indium halide gas, in a quartz reaction tube (1), wherein during the growth of GaxIn1-xN (0≦x≦1) crystal (12), quartz reaction tube (1) is externally heated and base substrate (7) is individually heated.
摘要翻译:看来,通过使用HVPE制造GaN晶体的常规方法可能通过在高于1100℃的温度下生成GaN晶体来提高GaN晶体的结晶度。然而,这种常规方法具有问题 因为当加热器(5)和(6)加热时,石英反应管(1)熔化到高于1100℃的温度。本文公开了一种制备GaxIn1-xN(0≤x≤1) )晶体(12)通过使含有氨气体的材料气体与至少一种以上的气体的反应在基底基板(7)的表面上生长GaxIn1-xN(0 <= x <= 1)晶体(12) 在石英反应管(1)中,在GaxIn1-xN(0 <= x <= 1)晶体(12)生长期间,石英反应管(1)被外部加热, 基底基板(7)被单独加热。
摘要:
A method for separating chips from a diamond wafer comprising a substrate, a chemically vapor-deposited diamond layer, and microelectronic elements, with the microelectronic elements protected from thermal damage and degradation caused by the thermally decomposed cuttings produced during the processing steps. (1) Front-side grooves 6 are formed on the chemically vapor-deposited diamond layer 2 by laser processing using a laser such as a YAG, CO2, or excimer laser each having a large output so that the grooves 6 can have a depth 1/100 to 1.5 times the thickness of the diamond layer. (2) The thermally decomposed cuttings produced during the laser processing are removed by using a plasma. (3) Back-side grooves 9 are formed on the substrate 1 by dicing such that the back-side grooves 9 are in alignment with the front-side grooves 6. (4) The diamond wafer 4 is divided into individual chips 10 by applying mechanical stresses.
摘要:
The present invention provides a method for manufacturing a highly pure 2,6-dimethylnaphthalene having a purity of 99% or more even when a mixture of dimethylnaphthalene isomers containing 5 wt % or more of 2,7-dimethylnaphthalate is used as a feedstock. The method for manufacturing 2,6-dimethylnaphthalene comprises a step of performing crystallization and solid-liquid separation of a liquid primarily containing dimethylnaphthalene isomers so that the liquid is separated into a cake containing the dimethylnaphthalene isomers and a mother liquor, and a step of performing separation/purification of the cake. In the method described above, the crystallization and the solid-liquid separation are performed under the condition in which the ratio of the content of 2,6-dimethylnaphthalene in the mother liquor to that of 2,7-dimethylnaphthalene therein is not less than 1 so that the content of 2,6-dimethylnaphthalene in the cake is 60% or more and that the content of 2,7-dimethylnaphthalene therein is 6.5% or less. As a result, a highly pure 2,6-dimethylnaphthalene is obtained by performing the separation/purification of the cake.
摘要:
Surfaces of diamond crystals are examined by coating the surfaces with thin metal films, launching laser beams to the diamond surfaces in a slanting angle, detecting defects and particles on the diamond surfaces by the scattering of beams and counting the defects and particles by a laser scanning surface defect detection apparatus. Diamond SAW devices should be made on the diamond films or bulks with the defect density less than 300 particles cm−2. Preferably, the diamond surfaces should have roughness less than Ra20 nm. Diamond SAW filters can be produced by depositing a piezoelectric film and making interdigital transducers on the low-defect density diamond crystals.
摘要:
Not only the cracking of granular reduced iron materials is reduced, but also reduced iron materials are fed uniformly onto a furnace floor regardless of a width of the furnace floor. A feeding system for reduced iron material includes a plurality of material feeding equipments 4 provided in a furnace width direction of a mobile furnace floor type reduction melting furnace, wherein each of the material feeding equipments 4 is constructed by a hopper 10 configured to receive reduced iron materials and discharge the materials from a discharge port 10a, a trough 14 configured to connect the discharge port 10a and a material charging portion of the mobile furnace floor type reduction melting furnace configured to receive the reduced iron materials discharged from the discharge port 10a, an exit portion provided on an exit side of the trough 14, and a vibration applying unit configured to cause the trough to vibrate along a furnace floor moving direction.
摘要:
There is provided a method for fabricating a gallium nitride crystal with low dislocation density, high crystallinity, and resistance to cracking during polishing of sliced pieces by growing the gallium nitride crystal using a gallium nitride substrate including dislocation-concentrated regions or inverted-polarity regions as a seed crystal substrate. Growing a gallium nitride crystal 79 at a growth temperature higher than 1,100° C. and equal to or lower than 1,300° C. so as to bury dislocation-concentrated regions or inverted-polarity regions 17a reduces dislocations inherited from the dislocation-concentrated regions or inverted regions 17a, thus preventing new dislocations from occurring over the dislocation-concentrated regions or inverted-polarity regions 17a. This also increases the crystallinity of the gallium nitride crystal 79 and its resistance to cracking during the polishing.
摘要:
Affords Group-III nitride single-crystal ingots and III-nitride single-crystal substrates manufactured utilizing the ingots, as well as methods of manufacturing III-nitride single-crystal ingots and methods of manufacturing III-nitride single-crystal substrates, wherein the incidence of cracking during length-extending growth is reduced. Characterized by including a step of etching the edge surface of a base substrate, and a step of epitaxially growing onto the base substrate hexagonal-system III-nitride monocrystal having crystallographic planes on its side surfaces. In order to reduce occurrences of cracking during length-extending growth of the ingot, depositing-out of polycrystal and out-of-plane oriented crystal onto the periphery of the monocrystal must be controlled. A layer of the base substrate edge surface, as just described, where it has been mechanically altered is removed beforehand by etching, whereby crystallographic planes form on the side surfaces of the III-nitride single-crystal ingot that is formed onto the base substrate, which therefore controls depositing-out of polycrystal and out-of-plane oriented crystal and reduces occurrences of cracking.
摘要:
An AlxGayIn1-x-yN crystal substrate of the present invention has a main plane having an area of at least 10 cm2. The main plane has an outer region located within 5 mm from an outer periphery of the main plane, and an inner region corresponding to a region other than the outer region. The inner region has a total dislocation density of at least 1×102 cm−2 and at most 1×106 cm-31 2. It is thereby possible to provide an AlxGayIn1-x-yN crystal substrate having a large size and a suitable dislocation density for serving as a substrate for a semiconductor device, a semiconductor device including the AlxGayIn1-x-yN crystal substrate, and a method of manufacturing the same.
摘要翻译:本发明的Al x Ga y In 1-x-y N晶体基板具有面积为至少10cm 2的主平面。 主平面具有位于与主平面的外周5mm以内的外部区域和与外部区域以外的区域对应的内部区域。 内部区域的总位错密度为至少1×102cm-2,最多为1×106cm-31.2。由此,可以提供具有大尺寸和合适位错密度的Al x Ga y In 1-x-y N晶体基板,用作 用于半导体器件的衬底,包括Al x Ga y In 1-x-y N晶体衬底的半导体器件及其制造方法。