摘要:
A memory transistor and a select transistor are disposed side by side on a semiconductor substrate between source/drain diffusion layers thereof, with an intermediate diffusion layer interposed therebetween. The memory transistor includes: a gate insulating film having such a thickness as to allow tunneling current to pass therethrough; a floating gate electrode; an interelectrode insulating film; and a control gate electrode. The select transistor includes a gate insulating film and a select gate electrode. Tunneling current, allowing electrons to pass through the gate insulating film under the floating gate electrode, is utilized during the removal and injection of electrons from/into the floating gate electrode. As a result, higher reliability can be attained and rewriting can be performed at a lower voltage. Also, since the select transistor is provided, reading can also be performed at a lower voltage. Improvement of reliability and rewrite and read operations at respective lower voltages are realized for a nonvolatile semiconductor memory device, in which a memory cell includes a floating gate electrode and a control gate electrode.
摘要:
A memory transistor and a select transistor are disposed side by side on a semiconductor substrate between source/drain diffusion layers thereof, with an intermediate diffusion layer interposed therebetween. The memory transistor includes: a gate insulating film having such a thickness as to allow tunneling current to pass therethrough; a floating gate electrode; an interelectrode insulating film; and a control gate electrode. The select transistor includes a gate insulating film and a select gate electrode. Tunneling current, allowing electrons to pass through the gate insulating film under the floating gate electrode, is utilized during the removal and injection of electrons from/into the floating gate electrode. As a result, higher reliability can be attained and rewriting can be performed at a lower voltage. Also, since the select transistor is provided, reading can also be performed at a lower voltage. Improvement of reliability and rewrite and read operations at respective lower voltages are realized for a nonvolatile semiconductor memory device, in which a memory cell includes a floating gate electrode and a control gate electrode.
摘要:
A memory transistor and a select transistor are disposed side by side on a semiconductor substrate between source/drain diffusion layers thereof, with an intermediate diffusion layer interposed therebetween. The memory transistor includes: a gate insulating film having such a thickness as to allow tunneling current to pass therethrough; a floating gate electrode; an interelectrode insulating film; and a control gate electrode. The select transistor includes a gate insulating film and a select gate electrode. Tunneling current, allowing electrons to pass through the gate insulating film under the floating gate electrode, is utilized during the removal and injection of electrons from/into the floating gate electrode. As a result, higher reliability can be attained and rewriting can be performed at a lower volt age. Also, since the select transistor is provided, reading c an also be performed at a lower voltage. Improvement of reliability and rewrite and read operations at respective lower voltages are realized for a nonvolatile semiconductor memory device, in which a memory cell includes a floating gate electrode and a control gate electrode.
摘要:
A gate insulator film and a gate electrode are formed on an Si substrate, and a CVD insulator film is deposited thereon to cover the gate electrode. Then, arsenic ions are implanted into the Si substrate from above the CVD insulator film to form LDD layers. After sidewall spacers have been formed over the side faces of the gate electrode with the CVD insulator film interposed therebetween, source/drain layers are formed. Since the LDD layers are formed by implanting dopant ions through the CVD insulator film, the passage of arsenic ions through the ends of the gate electrode can be suppressed. As a result, a semiconductor device suitable for miniaturization can be formed, while suppressing deterioration in insulating properties of the gate oxide film due to the passage of dopant ions through the ends of the gate electrode.
摘要:
A method for forming a semiconductor device is provided that allows a desirable semiconductor device to be obtained by preventing a gate electrode of a non-volatile semiconductor memory from having an abnormal shape and the surfaces of high concentration source and drain regions of the non-volatile semiconductor memory from being worn away. The method includes a first step of forming a non-volatile semiconductor memory in a first region of a substrate of the semiconductor device and a second step of forming a semiconductor device in a second region on the substrate. The non-volatile semiconductor memory includes a first gate including a tunnel insulating film, a floating gate electrode, a capacitor insulating film, and a control gate electrode, and the semiconductor device includes a second gate including a gate insulating film and a gate electrode. In this method, during patterning of the second gate, a surface of the first gate is covered with a protective film that hardly can be etched by an etchant used for the patterning of the second gate.
摘要:
The present invention provides, in a γ′ phase precipitation strengthening type Ni-base alloy, an alloy excellent in heat treatment capability and weldability and suitable for joint with a ferritic steel. Further, the present invention provides a welded turbine rotor having the strength, ductility, and toughness simultaneously over the whole welded structure when a precipitation strengthening type Ni-base alloy having a heatproof temperature of 675° C. or higher is joined to a ferritic steel.A Ni-base alloy according to the present invention contains cobalt, chromium, aluminum, carbon, boron, and at least either tungsten or molybdenum with the remainder being nickel and inevitable impurities, having an alloy composition including 12 to 25 percent by mass of Co, 10 to 18 percent by mass of Cr, 2.0 to 3.6 percent by mass of Al, 0.01 to 0.15 percent by mass of C, 0.001 to 0.03 percent by mass of B, the total amount of tungsten and molybdenum being 5.0 to 10 percent by mass.A welded turbine rotor is structured by joining or building up by welding a second Ni-base alloy to a first Ni-base alloy that a γ′ phase solid solution temperature thereof is 900° C. or higher and a creep fracture strength at 675° C. is 100 MPa or more, and further welding a ferritic steel to the second Ni-base alloy. The second Ni-base alloy is a γ′ phase (Ni3Al) precipitation strengthening type Ni-base alloy, a γ′ phase solid solution temperature thereof is 850° C. or lower.
摘要:
A nickel base alloy includes: by mass, 0.001 to 0.1% of carbon; 12 to 23% of chromium; 15 to 25% of cobalt; 3.5 to 5.0% of aluminum; 4 to 12% of molybdenum; 0.1 to 7.0% of tungsten; and a total amount of Ti, Ta and Nb being not more than 0.5%. A parameter Ps represented by a formula (1) shown below is 0.6 to 1.6, Ps=−7×[C]−0.1×[Mo]+0.5×[Al] (1) where [C] indicates an amount of carbon; [Mo] indicates an amount of molybdenum; and [Al] indicates an amount of aluminum, by mass percent.
摘要:
An Ni—Fe based superalloy forging material including 30 to 40 wt % of Fe, 14 to 16 wt % of Cr, 1.2 to 1.7 wt % of Ti, 1.1 to 1.5 wt % of Al, 1.9 to 2.2 wt % of Nb, 0.05 wt % or less of C and the remainder of Ni and inevitable impurities is solution-treated and aged, and thereby γ′ phase (Ni3Al) having an initial mean particle size of about 50 to about 100 nm is precipitated. This superalloy is excellent in high-temperature strength and high-temperature ductility and can produce a large forged product of 10 ton or more. Therefore, this material is suitable for use as the material of a steam turbine rotor having a main steam temperature of 650° C. or more.
摘要:
Disclosed is a low-thermal-expansion Ni-based super-heat-resistant alloy for a boiler, which has excellent high-temperature strength. The alloy can be welded without the need of carrying out any aging treatment. The alloy has a Vickers hardness value of 240 or less. The alloy comprises (by mass) C in an amount of 0.2% or less, Si in an amount of 0.5% or less, Mn in an amount of 0.5% or less, Cr in an amount of 10 to 24%, one or both of Mo and W in such an amount satisfying the following formula: Mo+0.5 W=5 to 17%, Al in an amount of 0.5 to 2.0%, Ti in an amount of 1.0 to 3.0%, Fe in an amount of 10% or less, and one or both of B and Zr in an amount of 0.02% or less (excluding 0%) for B and in an amount of 0.2% or less (excluding 0%) for Zr, with the remainder being 48 to 78% of Ni and unavoidable impurities.
摘要:
A Ni—Fe based super alloy having high strength and toughness at high temperatures even when used in high-temperature environments, and a process of producing the super alloy. A turbine disk using the super alloy, a process of producing the turbine disk, a turbine spacer using the super alloy, and a process of producing the turbine spacer, as well as a gas turbine are also provided. The Ni—Fe based super alloy contains not more than 0.03% by weight of C, 14-18% of Cr, 15-45% of Fe, 0.5-2.0% of Al, not more than 0.05% of N, 0.5 to 2.0% of Ti, 1.5-5.0% of Nb, and Ni as a main ingredient.