Abstract:
A display panel is provided, including an image data storage capacitor, a capacitive element, and four switches. The image data storage capacitor stores an image data. The sample unit has a control terminal for receiving a sample control signal. The capacitive element has a first terminal coupled to a pixel electrode of the image data storage capacitor via the sample unit. The first refresh unit has a control terminal coupled to the first terminal. The second refresh unit has a control terminal for receiving a refresh control signal. The third and first refresh unites are serially coupled with each other between a corresponding source line and the image data storage capacitor for receiving a data signal. The shunt unit has a control terminal coupled to the pixel electrode, a data terminal coupled to the first terminal, and another data terminal for receiving a shunt control signal.
Abstract:
An active matrix type display device utilizing multi-bit memory in pixel technology, capable of displaying still and moving pictures are provided. A display device of an embodiment includes a plurality of pixels P1 arranged in a matrix with lines and rows, wherein a source driver 20 provides either analogue or digital image data for the pixels. The respective pixels P1 are divided into a plurality of sub-pixels SP11 through SP14, wherein the sub-pixels respectively include display components C11 through C14, a memory means 40 memorizing gradation display data, for each display components, included in the digital image data provided by the source driver 20, and a data switching means 44 switching data providing for each display component to either of the gradation display data memorized in the memory means 40 and analogue image data provided by the source driver 20.
Abstract:
Active matrix display devices capable of improving aperture ratio of pixels and of smoothing intermediate colors are presented. An active matrix display device has static random access memory (SRAM) devices and digital to analog converters (DAC), which are both allocated to each of sub-pixels divided by a pixel. The SRAM stores an input digital data with over two bits, which can be used as gradient information for gray scale display of the sub-pixels. The input digital data is converted into analog data for display by the DAC. Gray scale display of the sub-pixels can be performed based on gray scales determined by the analog data for display. The pixel can be used to display multiple gray scales according to combinations of areas and gray scales of the sub-pixels.
Abstract:
The invention provides a liquid crystal display device capable of ensuring high transparent aperture ratio and realizing high resolution. The liquid crystal display device comprises: a first transparent substrate (301); a second transparent substrate (301) facing the first transparent substrate; an insulating layer (304) formed on the second transparent substrate; a plurality of pixel electrodes (20) formed on the insulating layer in a matrix form; an opposite electrode (24) formed on the first transparent substrate, facing the pixel electrode, and having a predetermined potential; a liquid crystal layer (303) existing between the pixel electrode and the opposite electrode; a pixel circuit (305) formed on the upper surface of the second transparent substrate, applying a voltage on the pixel electrode; and at least one parallel electrode (307′) parallel with the pixel electrode in the insulating layer.
Abstract:
The display device of the present invention includes a display area having a plurality of pixels arranged in rows and columns, at least one source driving device providing power or electric charges for the pixels through source lines, at least one gate driving device controlling the pixels through gate lines, and a boundary switch separating the display area into a plurality of sub-display areas and placed between the sub-display areas to connect or disconnect the source lines and/or the gate lines. When the boundary switch disconnects the source lines and/or the gate lines, the sub-display area directly connecting with the source driving device or the gate driving device will be driven.
Abstract:
This invention provides a digital-analog converter circuit capable of appropriately correcting the optical characteristics of the liquid crystals according to the change in design or the preference of the user, and achieving goals of miniaturization, cost-lowering, as well as wide design suitability. The digital-analog converter circuit includes a storage device for storing a voltage characteristic curve, a modulating device for generating a frequency signal in accordance with a data from the voltage characteristic curve stored in the storage device in response to a selected data, a variable resistance device connected between a first power source and a second power source, in which the resistance value of the variable resistance device is changed in accordance with the frequency signal from the modulating device, a holding device for holding a voltage generated at the variable resistance device, and an output device for outputting the voltage to a desired output end.
Abstract:
A display apparatus includes a plurality of pixels. Each pixel has a light emitting unit, a memory cell, and a driving circuit. The memory cell stores an image data. The driving circuit is electrically connected with the light emitting unit and the memory cell, and drives the light emitting unit according to the image data.
Abstract:
Display devices with image sensors are provided. Display pixel portions are disposed at intersections of gate lines and source lines and arranged as a matrix. Each display pixel portion includes a liquid crystal element, a photo detector detecting an incident light, a hold device sustaining an analog first data corresponding to a light flux of the incident light detected by the photo detector, and a data determination device generating a second data according to the first data sustained by the hold device. A gate driver selectively activates the gate lines. A source driver provides display data to the source lines. An output device retrieves the analyzed output data. The analyzed output data is the second data output by the data determination device through the source lines. A sensitivity control device changes a determination base of the analyzed output data corresponding to the intensity of the incident light.
Abstract:
To apply the overdriving technique to a display device provided with a gate driver circuit on a glass substrate for improving the liquid crystal response time.A gate driver circuit is formed on a glass substrate of a display panel and includes a plurality of gate driver units that are connected to respective gate lines GL. A control circuit controls the gate driver circuit so that the gate driver units sequentially drive the plurality of gate lines GL. The control circuit drives one gate line GL in a first period in each line period, while driving another gate line GL in a second period in each line period. The control circuit causes a delay in driving each gate line GL in the second period from the driving of each gate line GL in the first period with a delay time equal to the time for a plurality of gate lines.
Abstract:
An operating method and a display panel are provided. The method Includes a number steps. A display panel is provided, and has a pixel element, the pixel element including an n-bit memory, n being a positive integer in accordance with image data. The pixel element is driven by using a k-th data voltage, k being smaller than 2n, the k-th data voltage ranging between a plurality of data voltages having absolute values in an increasing order. When k is odd, the k-th data voltage has one of positive and negative polarities. When k is even, the k-th data voltage has the other one of positive and negative polarities.