Abstract:
A shift register is provided. In the shift register, each of successively cascaded shift register units includes first and second switches and first and second capacitors. For the first switch, a control terminal is coupled to a first node, an input terminal receives a first clock signal, and an output terminal is coupled to an output node. The first capacitor is coupled between the first node and the output node. The second capacitor is coupled between the output node and a ground terminal. For the second switch, an input terminal receives a second clock signal, and an output terminal is coupled to the first node. A carry signal is generated at the first node. For the N-th shift register unit, a control terminal of the second switch receives the carry signal generated at the first node of the previous shift register unit.
Abstract:
A display device includes a display unit and a plurality of refreshing units. The display unit has a plurality of the display areas. Each of the display areas has a plurality of pixels. Each of the pixels has a memory. The refreshing units respectively control to refresh the pixels of the corresponding display areas at different time periods. Thus, the produced peak current during the pixel refreshing can be reduced, and the stored pixel data can be maintained.
Abstract:
The invention provides a liquid crystal display device capable of ensuring high transparent aperture ratio and realizing high resolution. The liquid crystal display device comprises: a first transparent substrate (301); a second transparent substrate (301) facing the first transparent substrate; an insulating layer (304) formed on the second transparent substrate; a plurality of pixel electrodes (20) formed on the insulating layer in a matrix form; an opposite electrode (24) formed on the first transparent substrate, facing the pixel electrode, and having a predetermined potential; a liquid crystal layer (303) existing between the pixel electrode and the opposite electrode; a pixel circuit (305) formed on the upper surface of the second transparent substrate, applying a voltage on the pixel electrode; and at least one parallel electrode (307′) parallel with the pixel electrode in the insulating layer.
Abstract:
This invention provides a digital-analog converter circuit capable of appropriately correcting the optical characteristics of the liquid crystals according to the change in design or the preference of the user, and achieving goals of miniaturization, cost-lowering, as well as wide design suitability. The digital-analog converter circuit includes a storage device for storing a voltage characteristic curve, a modulating device for generating a frequency signal in accordance with a data from the voltage characteristic curve stored in the storage device in response to a selected data, a variable resistance device connected between a first power source and a second power source, in which the resistance value of the variable resistance device is changed in accordance with the frequency signal from the modulating device, a holding device for holding a voltage generated at the variable resistance device, and an output device for outputting the voltage to a desired output end.
Abstract:
Provided is a micro-electromechanical device capable of processing an electric signal in the high frequency region by a simple device structure. The micro-electromechanical device is formed, including an oscillator element having a plurality of electrodes disposed on a substrate and a beam facing the electrodes to oscillate by electrostatic drive. An input/output of a high frequency signal is applied to one of the combinations of the electrodes and the beam.
Abstract:
An active matrix type liquid crystal display is disclosed. The liquid crystal display comprises a plurality of pixel elements arranged in the form of a matrix. Each of the pixel elements comprises a liquid crystal element, a dynamic memory cell and a switch device. The dynamic memory cell is disposed at the intersection point of a source line and a gate line to periodically perform refreshing for inversing the output status of the dynamic memory cell, wherein the transmittance of the liquid crystal element is controlled by a digital output of the dynamic memory cell. The switch device is disposed between the dynamic memory cell and the liquid crystal element and uses a control signal to control the connection between the output of the dynamic memory cell and the liquid crystal elements.
Abstract:
The display device of the present invention includes a display area having a plurality of pixels arranged in rows and columns, at least one source driving device providing power or electric charges for the pixels through source lines, at least one gate driving device controlling the pixels through gate lines, and a boundary switch separating the display area into a plurality of sub-display areas and placed between the sub-display areas to connect or disconnect the source lines and/or the gate lines. When the boundary switch disconnects the source lines and/or the gate lines, the sub-display area directly connecting with the source driving device or the gate driving device will be driven.
Abstract:
This present invention provides a liquid crystal display (LCD) device in which the sub-pixel is provided with three different voltage levels, so that image quality is improved without the configuration of additional gate lines. The present invention overcomes the reduction of aperture ratio in conventional LCD devices due to the configuration of additional gate lines. By the present invention, the white washout problem relating to the off-axis viewing angle can be overcome while the aperture ratio is not reduced.
Abstract:
This invention provides a digital-analog converter circuit capable of appropriately correcting the optical characteristics of the liquid crystals according to the change in design or the preference of the user, and achieving goals of miniaturization, cost-lowering, as well as wide design suitability. The digital-analog converter circuit includes a storage device for storing a voltage characteristic curve, a modulating device for generating a frequency signal in accordance with a data from the voltage characteristic curve stored in the storage device in response to a selected data, a variable resistance device connected between a first power source and a second power source, in which the resistance value of the variable resistance device is changed in accordance with the frequency signal from the modulating device, a holding device for holding a voltage generated at the variable resistance device, and an output device for outputting the voltage to a desired output end.
Abstract:
It is an object to provide an active matrix liquid crystal display device capable of effectively eliminating flicker with a simple structure. An active matrix liquid crystal display device has a plurality of gate lines, a plurality of source busses extending orthogonal to the gate lines, a plurality of liquid crystal elements provided in intersections of the gate lines with the source busses and, as a whole, disposed in matrix form, the liquid crystal devices being connected between a pixel electrode and an opposite electrode connected to a first bus line in a floating condition, a plurality of control circuits provided in relation with the liquid crystal element, the control circuits having: first and second transistors, of which gates are connected to the gate lines respectively, arranged in series between the source busses and the pixel electrode, a third transistor provided between a midpoint node of the first and second transistors and a second bus line to serve as a switch, the second bus line being identical in potential to the first bus line and being electrically isolated from the first bus line, and a fourth transistor connected in parallel with the liquid crystal elements between the pixel electrode and the opposite electrode to detect drain voltage.