摘要:
An organic compound of formula E is made from a process comprising: reacting a compound of formula A and a compound of formula B to form a compound of formula C; and reacting one of the compound of formula C and the compound of formula D with a first boron esterification reagent to generate a boronic acid or a boronic ester to react with another of the compound of formula C and the compound of formula D to form a compound of formula E; wherein R1, R2, and R3 are, independently at each occurrence, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical.
摘要:
The present invention relates to process comprising reacting a polyfluorenes comprising at least one structural group of formula I with an iridium (III) compound of formula II The invention also relates to the polyfluorenes, which are products of the reaction, and the use of the polyfluorenes in optoelectronic devices.
摘要:
Compounds of formula I may be used in optoelectronic devices wherein R1, R2 and R4 are, independently at each occurrence, H, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; R3 is H or a is, independently at each occurrence, 1 or 2; b is, independently at each occurrence, an integer ranging from 0-3; c is, independently at each occurrence, an integer ranging from 0-4; Ar is independently at each occurrence, H, or heteroaryl; and at least two of Ar are heteroaryl.
摘要:
The present invention provides compositions comprising at least one novel polymeric organic iridium compound which comprises at least one cyclometallated ligand and at least one ketopyrrole ligand. The polymeric organic iridium compositions of the present invention are referred to as Type (2) organic iridium compositions and are constituted such that at least one ligand of the novel organic iridium compound has a number average molecular weight of 2,000 grams per mole or greater (as measured by gel permeation chromatography). Type (2) organic iridium compositions are referred to herein as comprising “polymeric organic iridium complexes”. The novel organic iridium compositions are useful in optoelectronic electronic devices such as OLED devices and photovoltaic devices. In one aspect, the invention provides novel organic iridium compositions useful in the preparation of OLED devices exhibiting enhanced color properties and light output efficiencies.
摘要:
Organic compounds of formula I may be used in optoelectronic devices wherein R1 is, independently at each occurrence, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; R2 is, independently at each occurrence, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; a is, independently at each occurrence, an integer ranging from 0-4; b is, independently at each occurrence, an integer ranging from 0-3; Ar1 is a direct bond or heteroaryl, aryl, or alkyl or cycloalkyl; Ar2 is heteroaryl, aryl, or alkyl or cycloalkyl; c is 0, 1 or 2; and n is an integer ranging from 2-4.
摘要:
Polymers including at least one structural unit derived from a compound of formula I or including at least one pendant group of formula II may be used in optoelectronic devices wherein R1, R3, R4 and R6 are independently hydrogen, alkyl, alkoxy, oxaalkyl, alkylaryl, aryl, arylalkyl, heteroaryl, substituted alkyl; substituted alkoxy, substituted oxaalkyl, substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted heteroaryl; R1a is hydrogen or alkyl; R2 is alkylene, substituted alkylene, oxaalkylene, CO, or CO2; R2a is alkylene; R5 is independently at each occurrence hydrogen, alkyl, alkylaryl, aryl, arylalkyl, alkoxy, carboxy, substituted alkyl; substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted alkoxy, X is halo, triflate, —B(OR1a)2, or located at the 2, 5- or 2, 7-positions; and L is derived from phenylpyridine, tolylpyridine, benzothienylpyridine, phenylisoquinoline, dibenzoquinozaline, fluorenylpyridine, ketopyrrole, 2-(1-naphthyl)benzoxazole)), 2-phenylbenzoxazole, 2-phenylbenzothiazole, coumarin, thienylpyridine, phenylpyridine, benzothienylpyridine, 3-methoxy-2-phenylpyridine, thienylpyridine, phenylimine, vinylpyridine, pyridylnaphthalene, pyridylpyrrole, pyridylimidazole, phenylindole, derivatives thereof or combinations thereof.
摘要:
The present invention provides novel ketopyrroles having structure XXIV wherein R2 is independently at each occurrence a deuterium atom, a halogen, a nitro group, an amino group, a C3-C40 aromatic radical, a C1-C50 aliphatic radical, or a C3-C40 cyclcoaliphatic radical; “a” is an integer from 0 to 3; and X1 and X2 are independently at each occurrence a bromine atom, a hydroxy group, or the group OR10, and wherein the group R10 is independently at each occurrence a deuterium atom, a halogen, a nitro group, an amino group, a C3-C40 aromatic radical, a C1-C50 aliphatic radical, or a C3-C40 cyclcoaliphatic radical. Ketopyrroles XXIV are useful ligands for the preparation of Type (1) and Type (2) organic iridium compositions. In one aspect, the present invention provides deuterated analogs of XXIV. Organic iridium compositions are useful in the preparation optoelectronic devices, such as OLED devices and photovoltaic devices exhibiting enhanced performance characteristics.
摘要:
The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.
摘要:
A polymer useful in an optoelectronic device comprises structural unit of formula I: wherein R1 is, independently at each occurrence, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; a is, independently at each occurrence, an integer ranging from 0-4; Ar1 is aryl or heteroaryl; Ar2 is fluorene; R2 is alkylene, substituted alkylene, oxaalkylene, CO, or CO2; R3, R4 and R5 are independently hydrogen, alkyl, alkoxy, alkylaryl, aryl, arylalkyl, heteroaryl, substituted alkyl; substituted alkoxy, substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted heteroaryl; and L is derived from phenylpyridine, tolylpyridine, benzothienylpyridine, phenylisoquinoline, dibenzoquinozaline, fluorenylpyridine, ketopyrrole, 2-(1-naphthyl)benzoxazole)), 2-phenylbenzoxazole, 2 phenylbenzothiazole, coumarin, thienylpyridine, phenylpyridine, benzothienylpyridine, 3 methoxy-2-phenylpyridine, thienylpyridine, phenylimine, vinylpyridine, pyridylnaphthalene, pyridylpyrrole, pyridylimidazole, phenylindole, derivatives thereof or combinations thereof.
摘要:
The present invention relates to process comprising reacting a polyfluorenes comprising at least one structural group of formula I with an iridium (III) compound of formula II wherein R1 and R2 are independently alkyl, substituted alkyl, aryl, substituted aryl or a combination thereof; R5is H or CHO; R3 and R4 are independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl or a combination thereof; R11 and R12 taken together form a substituted or unsubstituted monocyclic or bicyclic heteroaromatic ring; R13 is independently at each occurrence halo, nitro, hydroxy, amino, alkyl, aryl, arylalkyl, alkoxy, substituted alkoxy, substituted alkyl, substituted aryl, or substituted arylalkyl; Ar is aryl, heteroaryl, substituted aryl, substituted heteroaryl, or a combination thereof; X is selected from a direct bond, alky, substituted alkyl, and combinations thereof; Y is CHO or NH2; Z is CHO or NH2 where Z does not equal Y; and p is 0, 1 or 2. The invention also relates to the polyfluorenes, which are products of the reaction, and the use of the polyfluorenes in optoelectronic devices.