摘要:
Fine aluminum powders are prepared by decomposing alane-adducts in organic solvents under an inert atmosphere to provide highly uniform particles selectably sized from about 65 nm to about 500 nm and believed particularly effective as fuels and additives, in pyrotechnics, and in energetic materials including composites, super thermite, and other explosives. Effective adduct species are trialkyl amines and tetramethylethylenediamine, ethers and other aromatic amines being believed effective. Effective production is obtained at atmospheric pressure and at temperatures as low as 50.degree. C. with xylene solvent. Increased production rate is achieved at higher temperatures. Toluene, dioxane, and tetramethylethylenediamine were also effective solvents. Aliphatic solvents and other aromatic and polar solvents are believed effective. Titanium catalyst was provided as a halide, amide, and alkoxide; and it is believed that the corresponding compounds of zirconium, hafnium, vanadium, niobium, and tantalum are effective as catalysts. Particle size was controlled by varying catalyst concentration and by varying the concentration of an adducting species, as by adding an amine to the solution or using an amine as the solvent. It is believed that particle size is controllable by varying the catalyst, concentration of the reactants, polarity of the solvent, reaction temperature, and the stage and rate at which the solution is brought to this temperature. The product powder is passivated in the reaction vessel by exposing the solution to air before product separation or by controlling the admission of air to the separated, dried powder.
摘要:
Fine aluminum powders are prepared by decomposing alane-adducts in organicolvents under an inert atmosphere to provide highly uniform particles and believed particularly effective as fuels and additives, in pyrotechnics, and in energetic materials. Effective adduct species are trialkyl amines and tetramethylethylenediamine, ethers and other aromatic amines. Effective production is obtained at atmospheric pressure and at temperatures as low as 50.degree. C. with xylene solvent. Toluene, dioxane, and tetramethylethylenediamine were also effective solvents. Aliphatic solvents and other aromatic and polar solvents are believed effective. Titanium catalyst was provided as a halide, amide, and alkoxide; and it is believed that the corresponding compounds of zirconium, hafnium, vanadium, niobium, and tantalum are effective as catalysts. Particle size was controlled by varying catalyst concentration and by varying the concentration of an adducting species. It is believed that particle size is controllable by varying the catalyst, concentration of the reactants, polarity of the solvent, reaction temperature, and the stage and rate at which the solution is brought to this temperature. The product powder is passivated in the reaction vessel by exposing the solution to air before product separation or by controlling the admission of air to the separated, dried powder.
摘要:
A lead-free pyrotechnic and primary explosive compositions including metal iodates as an oxidizer in nanocomposite energetic compositions including metal powder fuel.
摘要:
A process to increase the fluidity of metal powders by surface modification with alkylsilane reagents. This invention generally discloses that the most efficient process results from treatment with methyltrichlorosilane in hexane. In particular, the fluidity of aluminum powders having mean diameters smaller than 10 micrometers was considerably improved by the process of embodiments of the invention.
摘要:
The present invention demonstrates a superior, more economical, and scalable process to increase the fluidity of metal powders by surface modification with alkylsilane reagents. This invention discloses that the most efficient process results from treatment with methyltrichlorosilane in hexane. In particular, the fluidity of aluminum powders having mean diameters smaller than 10 micrometers was considerably improved by the process of the present invention. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope of the claims.
摘要:
A method of making films surface imprinted with nanometer-sized particles to produce micro- and/or nano-structured electron and hole collecting interfaces, include providing at least one transparent substrate, providing at least one photoabsorbing conjugated polymer, providing a sufficient amount of nanometer-sized particles to produce a charge separation interface, providing at least one transparent polymerizable layer, embedding the nanometer-sized particles in the conjugated polymer, applying the polymerizable layer and the conjugated polymer/nanometer-sized particle mixture on separate substrates where the nanometer-sized particles form a stamp surface, imprinting the stamp surface into the surface of the polymerizable film layer to produce micro- and/or nano-structured electron and hole collecting interfaces, polymerizing the polymerizable film layer to form a conformal gap, and filling the gap with at least one photoabsorbing material to promote the generation of photoexcited electrons and transport to the charge separation interface.
摘要:
A film surface imprinted with nanometer-sized particles to produce micro- and/or nano-structured electron and hole collecting interfaces, including: at least one substrate; at least one photoabsorbing conjugated polymer (including polybutylthiophene (pbT)) applied on a substrate, nanometer-sized particles including multiwalled carbon nanotubes (MWNT) to produce a charge separation interface; at least one transparent polymerizable layer, wherein the MWNT are embedded in the conjugated polymer to produce mixture and applied on a substrate to form a MWNT bearing surface film layer to form a stamp surface which is imprinted into the surface of the polymerizable film layer to produce micro- and/or nano-structured electron and hole collecting interfaces; polymerizing the polymerizable film layer to form a conformal gap between the MWNT stamp surface and the surface of the polymerizable film layer, and filling the gap with a photoabsorbing material to promote the generation of photoexcited electrons and transport to the charge separation interface.
摘要:
Finely divided metal sulfide powders of uniform size are produced at low temperatures by a method of adding solutions of organometallic compounds to an organic solvent saturated with H.sub.2 S. The solvent is kept saturated with H.sub.2 S by adding H.sub.2 S at a rate greater than that for the organometallic compound.