摘要:
A foreign substance inspection apparatus having a good signal to noise ratio with optical detection accuracy capable of detecting infinitesimal foreign substances, comprising a lighting portion to irradiate with an S polarized laser light beam and having the optical axis parallel to the substrate to be inspected, a detecting portion having an optical axis located in a position set by rotating the optical axis of the lighting portion by 120.degree. to 160.degree. with the point of intersection of the optical axis of the lighting portion and the surface to be inspected as the center of rotation so as to have an angle made with the surface to be inspected of 45.degree. or smaller to detect the area irradiated from the lighting portion by detecting the S polarized component in the scattered component from the foreign substances existing on the surface to be inspected and converting the S polarized component photoelectrically to a signal, and a signal processing portion to detect a foreign substance based on the signal outputted from the detecting portion.
摘要:
A method for foreign particles inspection includes illuminating an inspection surface of an inspection object with a beam which is, one of s-polarized and p-polarized relative to the inspection surface of the inspection object. The illumination utilizes an optical axis which is generally parallel to the inspection surface or which intersects the inspection surface at an angle that is greater than or equal to 1.degree. and less than 5.degree.. Reflected and scattered light is detected utilizing an optical axis which makes an acute angle with the inspection surface and which makes a differential angle of 30.degree. or less with the optical axis of the illumination beam. The detection of foreign particles is accomplished by detecting the component of the reflected and scattered light which is the other of s-polarized and p-polarized relative to the inspection surface.
摘要:
A back light illuminator for liquid crystal display apparatus comprises a fluorescent lamp, a light guide member, and a reflection plate enclosing the fluorescent lamp and an incident portion of the light guide member so as to reflect light rays toward the incident portion of the light guide member. The reflection plate has at least a curved portion having a parabolic cross-section or a elliptical cross-section so as not to reflect the light rays in a direction to the fluorescent lamp. Thus, absorption of reflected light by the fluorophor of the fluorescent lamp is minimized, and the luminance of the back light illuminator is increased.
摘要:
An efficient, luminous and energy-saving panel-form illuminating system suitable for mass-production, comprising at least a photoconductor, a linear light source at one side of the photoconductor, and a reflector; wherein grooves or protrusions are formed on the bottom surface of the photoconductor.
摘要:
A liquid crystal layer is interposed between two polarizers arranged in a parallel Nicol or crossed Nicol manner, and a phase plate is set between two polarizers so that the transmission direction of the first polarizer coincides with the optical axis. Then, a rotation angle at which optical intensity transmitted through the second polarizer has an extreme value to be determined, and the thickness of the birefringence layer is calculated according to the rotation angle of the phase plate. In a different method, a half-wave plate is used. First, the liquid crystal layer is set at a position where an optical intensity of the transmission light has an extreme value, and the half-wave plate provided between the two polarizers is set so that a transmission direction of the first polarizer coincides with the optical axis. Then, a rotation angle of the phase plate is determined at which an optical intensity of light transmitted through the second polarizer has an extreme value. Then, the thickness is calculated according to the rotation angle of the half-wave plate. Thus, the thickness is measured in a short time even for a liquid crystal that does not have a twist angle of 90.degree. or in which the rubbing direction is not known.
摘要:
An optical encoder includes: a light source; a first grating plate having a first diffraction grating for diffracting a light beam emitted from the light source; a second grating plate having a second diffraction grating for further diffracting the light beam diffracted by the first diffraction grating; a reflector for reflecting the light beam from the second grating plate so as to allow the light beam to reenter the second grating plate; and a light-receiving portion for receiving the light beam reflected by the reflector and successively diffracted by the second and first grating plates, wherein a diffraction angle of plus and minus first-order diffracted light beams of the first diffraction grating is substantially equal to that of the plus and minus first-order diffracted light beams of the second diffraction grating, and the light-receiving portion generates an electric signal in accordance with the amount of the plus and minus first-order diffracted light beams of the first diffraction grating.
摘要:
An array light source 1 with semiconductor laser sources disposed one-dimensionally and a projective lens 2 are used to illuminate an inspected object so that light beams projected from the array light source form a dotted line on the object. A line sensor is used to receive through an objective lens 3 light emitted from an imaging area 11 away from an illuminated area 12. An image signal, fed to an image processing unit 8 through a pre-processing unit 7 producing an image from signals from the line sensor 4 and a stage 5 is processed, while the stage 5 bearing the object 6 is being gradually moved, to inspect the object 6 for crack defects 9 and 10 by detecting an optically nonhomogeneous portion of the object. The method allows a crack defect of an object, such as a ceramic substrate or a sintered metal product, to be detected fast with high accuracy.
摘要:
A phase grating has a concave part of rectangular shape type substantially, of which grating depth is deeper in a specific range than depth d' calculated in a formula .vertline.n-n.sub.0 .vertline..times.(p-d'/e)/p.times.d'=(.lambda./2).times.(1+2m) (where m=0, .+-.1, .+-.2, . . . ) in terms of center wavelength .lambda. of light having partial interference to be diffracted by the phase grating, pitch length p of the phase grating, refractive index n of base material of the phase grating, refractive index n.sub.0 of medium surrounding the phase grating, and shape ratio e as the ratio of grating depth to width of slope of the concave part.
摘要:
An optical encoder including a light source and a first grating plate having a first diffraction grating for diffracting a light beam emitted from the light source. The optical encoder further includes a second grating plate having a second diffraction grating including a blazed diffraction grating for further diffracting the light beam diffracted by the first diffraction grating so as to allow the light beam to be incident on the first grating plate. The optical encoder also includes a light-receiving portion for receiving the light beam reentering the first grating plate and diffracted by the first grating plate. The second diffraction grating is designed so that the greater part of the diffracted light is concentrated in diffracted light beam of a predetermined order among the light beams from the first diffraction grating, and the diffracted light beam of the predetermined order travels from the second diffraction grating in a direction which is parallel with a direction in which the light beam is incident on the second diffraction grating from the first grating plate. The light-receiving portion generates an electric signal in accordance with an amount of plus and minus mth-order diffracted light beams of the further diffracted light beam.
摘要:
The present invention provides an optical encoder capable of using the recesses and convexes of a movable plate and a fixed plate to accurately generate a Z phase signal in synchronism with an A/B phase signal. Phase type diffraction gratings on the moving and fixed plates including a plurality of tracks with different grating pitches cause parallel coherent beams to interfere with one another, and a light receiving part detects the intensity of light to obtain a plurality of synchronous signals with different periods. On the other hand, the light receiving part detects light spots formed by condensing elements on the movable plate to generates a single pulse per rotation as a reference position. One of the plurality of synchronous signals that has the shortest period is selected as an A/B phase signal that depends on the movement of the movable plate. The conjunction of the reference position signal and the plurality of synchronous signals is determined as a Z phase signal indicating the origin of the movable plate, thereby obtaining a Z phase signal in synchronism with one pulse of the A/B phase signal.