摘要:
A negative electrode of a non-aqueous electrolyte secondary battery contains, as main a component, composite particles constructed in such a manner that at least part of the surface of nuclear particles comprising at least one of tin, silicon and zinc as a constituent element, is coated with a solid solution or an inter-metallic compound composed of elements included in the nuclear particle and at least one element, exclusive of the element included in said nuclear particle, selected from a group of elements in a Periodic Table, comprising group 2 elements, transition elements, group 12 elements, group 13 elements and group 14 elements exclusive of carbon. The batteries of the present invention include non-aqueous electrolytic solution and solid electrolytes comprising polymer gel electrolytes. The construction of the present invention provides a non-aqueous electrolytic secondary battery with which a possibility of the generation of gas is extremely low when stored at high temperatures. It also provides a battery having higher capacity, and superior cycle properties, high-rate charge/discharge properties.
摘要:
The present invention relates to a non-aqueous electrolyte secondary battery. The negative electrode of the present invention is characterized by its composite particles constructed in such a manner that at least part of the surrounding surface of nuclear particles containing at least one of tin, silicon and zinc as a constituent element, is coated with a solid solution or an intermetallic compound, which are composed of the element contained in the nuclear particles, and at least one other element except the elements contained in the nuclear particles selected from a group comprising group 2 elements, transition elements, group 12 elements, group 13 elements and group 14 elements except carbon of the Periodic Table. The electrolyte uses anion lithium salts of organic acid dissolved in organic solvent with high oxidation resistant characteristics. By adopting the above construction, a battery which generates only a small amount of gas during a high temperature storing can be obtained. Furthermore, the batteries enjoy high energy density and a lower reduction rate of discharge capacity when used repeatedly as well as high charge/discharge properties.
摘要:
A non-aqueous electrolyte secondary battery comprises a positive electrode and a negative electrode capable of intercalating and de-intercalating lithium, a non-aqueous electrolyte and separators or solid electrolytes. The negative electrode contains, as a main component, composite particles constructed in such a manner that at least part of the surface of nuclear particles comprising at least one of tin, silicon and zinc as a constituent element, is coated with a solid solution or an inter-metallic compound composed of the element included in the nuclear particles and another predetermined element which is not an element included in the nuclear particles. To improve the ability of the battery, the composite particles mentioned above can include at least one trace element selected from iron, lead and bismuth. The porosity of a mixture layer at the negative electrode is 10% or more and 50% or less. The amount of the non-aqueous electrolyte, the thickness of the separators or the like is restricted in a specific value. The foregoing construction suppresses occurrence of an internal short circuit between the positive electrode and the negative electrode caused by expansion of the negative electrode materials, thereby achieving a high capacity battery with a superior charge/discharge cycle properties, which is suitable for a high-speed charging.
摘要:
A negative electrode is characterized by its composite particles constructed in such a manner that at least part of the surrounding surface of nuclear particles containing at least one of tin, silicon and zinc as a constituent element, is coated with a solid solution or an inter-metallic compound, which is composed of, the element included in the nuclear particles, and at least one other element except the elements included in the nuclear particles selected from a group comprising group 2 elements, transition elements, group 12 elements, group 13 elements and group 14 elements except carbon of the Periodic Table. The present invention is characterized that the lithium content of the nuclear particles of the composite particles is 40-95 atomic percent of the theoretical limit of lithium content of each constituent element of the nuclear particles. Further, the batteries are first charged at a constant current and upon reaching the predetermined voltage, are charged at a constant voltage. The current density during charging are set at not more than 5 mA/cm2 as a in the area where the positive and negative electrodes face each other.
摘要翻译:负极的特征在于其复合颗粒以这样的方式构成,使得至少部分包含锡,硅和锌中的至少一种作为构成元素的核颗粒的周围表面涂覆有固溶体或间 - 金属化合物,其由包含在核粒子中的元素构成,以及除了选自包含第2族元素,过渡元素,第12族元素,第13族元素的族的核粒子中的元素以外的至少一种其它元素, 第14组元素除了周期表的碳。 本发明的特征在于,复合粒子的核粒子的锂含量为核粒子的各构成元素的锂含量的理论极限的40〜95原子%。 此外,电池首先以恒定电流充电并且在达到预定电压时以恒定电压充电。 在正极和负极彼此面对的区域中,充电时的电流密度设定为5mA / cm 2以下。
摘要:
A negative electrode material for non-aqueous electrolyte secondary batteries, characterized in that the negative electrode material comprises a composite particle including solid phases A and B, the solid phase A being dispersed in the solid phase B, and the ratio (IA/IB) of the maximum diffracted X-ray intensity (IA) attributed to the solid phase A to the maximum diffracted X-ray intensity (IB) attributed to the solid phase B satisfies 0.001≦IA/IB≦0.1, in terms of a diffraction line obtained by a wide-angle X-ray diffraction measurement of the composite particle.
摘要翻译:一种非水电解质二次电池用负极材料,其特征在于,所述负极材料包括固相A和B的复合粒子,所述固相A分散在固相B中,所述比例(IA / IB) 归因于固相B的固相A的最大衍射X射线强度(IA)与归于固相B的最大衍射X射线强度(IB)的折射率相对于衍射线满足0.001≤n1E; IA / IB&N1; 0.1 通过复合粒子的广角X射线衍射测定得到。
摘要:
A negative electrode material for non-aqueous electrolyte secondary batteries, characterized in that the negative electrode material comprises a composite particle including solid phases A and B, the solid phase A being dispersed in the solid phase B, and the ratio (IA/IB) of the maximum diffracted X-ray intensity (IA) attributed to the solid phase A to the maximum diffracted X-ray intensity (IB) attributed to the solid phase B satisfies 0.001≦IA/IB≦0.1, in terms of a diffraction line obtained by a wide-angle X-ray diffraction measurement of the composite particle.
摘要翻译:一种非水电解质二次电池用负极材料,其特征在于,所述负极材料包括固相A和B的复合粒子,所述固相A分散在固相B中,所述比例(IA / IB) 归因于固相B的固相A的最大衍射X射线强度(IA)与归于固相B的最大衍射X射线强度(IB)的折射率相对于衍射线满足0.001≤n1E; IA / IB&N1; 0.1 通过复合粒子的广角X射线衍射测定得到。
摘要:
A high capacity negative electrode for a non-aqueous electrolyte secondary battery which has low declining rate in discharge capacity caused by charge/discharge cycles by improving the electronic conductivity on the surface of the particles of the negative electrode material. The negative electrode material is formed by coating part of or the entire surface of solid phase A comprising a nucleus particle with the solid phase B. The solid phase A contains silicon as a constituent element. The solid phase B is composed of a solid solution or intermetallic compounds composed of silicon and at least one another element selected from a group comprising of group 2 elements, transition elements, group 12 elements, group 13 elements and group 14 elements (exclusive of carbon and silicon) of the Periodic Table.
摘要:
A negative electrode material for non-aqueous electrolyte secondary batteries, characterized in that the negative electrode material comprises a composite particle including solid phases A and B, the solid phase A being dispersed in the solid phase B, and the ratio (IA/IB) of the maximum diffracted X-ray intensity (IA) attributed to the solid phase A to the maximum diffracted X-ray intensity (IB) attributed to the solid phase B satisfies 0.001≦IA/IB≦0.1, in terms of a diffraction line obtained by a wide-angle X-ray diffraction measurement of the composite particle.
摘要翻译:一种非水电解质二次电池用负极材料,其特征在于,所述负极材料包括固相A和B的复合粒子,所述固相A分散在固相B中,所述比例(IA / IB) 归因于固相B的固相A的最大衍射X射线强度(IA)与归于固相B的最大衍射X射线强度(IB)的折射率相对于衍射线满足0.001≤n1E; IA / IB&N1; 0.1 通过复合粒子的广角X射线衍射测定得到。
摘要:
When the composite particle containing Si or Sn is used for the negative electrode, the ratio of the median diameter “Dc” of the conductive material to the median diameter “Da” of the negative electrode material (Dc/Da) is made from 0.02 to 0.5 in order to improve reduction in electron conductivity, which is attributed to fine division of the particles due to repeated charge/discharge.
摘要:
A negative electrode material for a nonaqueous electrolyte secondary battery having a high discharge capacity and a good cycle life is made from alloy particles having an average particle diameter of 0.1-50 μm and including Si phase grains 40 and a phase of a solid solution or an intermetallic compound of Si and other element selected from Group 2A elements, transition elements, Group 3B elements, and Group 4B elements from the long form periodic table (for example, an NiSi2 phase 42 and an [NiSi2+NiSi] phase 41) at least partially enveloping the Si phase grains. 5-99 wt % of this material is Si phase grains. The alloy particles can be manufactured by rapid solidification (such as atomization or roller quenching) of a melt including Si and the other element, or by adhering the other element to Si powder by electroless plating or mechanical alloying and then performing heat treatment. Even if rapid solidification is carried out, a negative electrode material having a good discharge capacity and cycle life is obtained without heat treatment.