摘要:
A manufacturing method for a permanent magnet includes the steps of a) producing a permanent magnet (1), b) fracturing the permanent magnet (1) to obtain two or more separate pieces (13), and c) restoring the permanent magnet (1) by fitting the fracture surfaces of adjacent separate pieces (13) together.
摘要:
A manufacturing method for a permanent magnet includes the steps of a) producing a permanent magnet (1), b) fracturing the permanent magnet (1) to obtain two or more separate pieces (13), and c) restoring the permanent magnet (1) by fitting the fracture surfaces of adjacent separate pieces (13) together.
摘要:
A rotor (104) includes a rotor core (105) and permanent magnets (111, 112, 121, 122) embedded in the rotor core (105). The permanent magnet (111) includes a first surface that is a flat surface facing a stator side, and a second surface that is opposite from the first surface. A center position of a middle portion of the permanent magnet (111) which is a center in the magnetization direction of the permanent magnet (111) is positioned in a stator side of a center position of two opposite end portions of the permanent magnet (111) in a direction orthogonal to the magnetization direction which is a center in the magnetization direction.
摘要:
Provided is a coercive-force specifying apparatus capable of creating a demagnetization curve for each divisional area of a coercive-force distributed magnet without breaking the coercive-force distributed magnet and of specifying an average coercive force for each divisional area precisely.A coercive force specifying apparatus of the present invention includes: a yoke including an insertion space into which a coercive-force distributed magnet is to be inserted; a magnetizing coil; a search coil that detects a magnetization change when the magnetic field is applied to the coercive-force distributed magnet; and a tracer that creates a demagnetization curve on a basis of a voltage value generated due to the magnetization change. The end face is provided with two or more loop-shaped thread grooves bored therein, the search coil being provided in each thread groove. The coercive-force distributed magnet includes a divisional area defined so as to correspond to each of the two or more search coils, and a voltage value due to a magnetization change detected by each search coil is transmitted to the tracer for creation of a magnetization curve at a corresponding divisional area as well as for specification of an average coercive force.
摘要:
Provided is a coercive-force specifying apparatus capable of creating a demagnetization curve for each divisional area of a coercive-force distributed magnet without breaking the coercive-force distributed magnet and of specifying an average coercive force for each divisional area precisely. A coercive force specifying apparatus of the present invention includes: a yoke including an insertion space into which a coercive-force distributed magnet is to be inserted; a magnetizing coil; a search coil that detects a magnetization change when the magnetic field is applied to the coercive-force distributed magnet; and a tracer that creates a demagnetization curve on a basis of a voltage value generated due to the magnetization change. The end face is provided with two or more loop-shaped thread grooves bored therein, the search coil being provided in each thread groove. The coercive-force distributed magnet includes a divisional area defined so as to correspond to each of the two or more search coils, and a voltage value due to a magnetization change detected by each search coil is transmitted to the tracer for creation of a magnetization curve at a corresponding divisional area as well as for specification of an average coercive force.
摘要:
A method of producing a permanent magnet includes: forming a multiplicity of solidified ribbons that are composed of nanosized crystal grains by melting a magnet material and rapidly cooling the molten product; binding the multiplicity of solidified ribbons together by compression molding and sintering to form a sintered body; and performing plastic forming on the sintered body to provide the sintered body with a distribution of strain which increases from a peripheral portion to a central portion.
摘要:
The present invention provides a rotor a for magnet-embedded motor and a magnet-embedded motor whereby the manufacturing cost thereof can be significantly reduced while securing desired coercive force and magnetic flux density. A rotor for a magnet-embedded motor which comprises a plurality of permanent magnets 21 embedded therein, wherein each permanent magnet 21 is formed with a plurality of magnetic regions A to D having different coercive forces that are determined based on the intensity of the inverse magnetic field that acts on each permanent magnet 21, provided that a magnetic region having a relatively large coercive force is designated to be a region that is influenced by a relatively large inverse magnetic field.
摘要:
Disclosed are a rotor and an IPM motor capable of avoiding concentration of flux on a corner area of a magnet on the stator side, leading to reduction in demagnetizing field and accordingly reduction in a required coercive force, and reduction in the usage amount of dysprosium or the like and accordingly reduction in manufacturing cost. In a slot bored in a rotor core of a rotor making up a motor, at least one of a slot face on a center side of the rotor core and a slot face facing this slot face is formed a protrusion or a concave groove and the magnet to be inserted in the slot includes at least one of a concave groove and a protrusion to be engaged with the protrusion or the concave groove of the slot face at a position corresponding to the protrusion or the concave groove formed in the slot. Then, these concave groove and protrusion are engaged to form an engagement part. This engagement part aligns and fixes the magnet in the rotor, and a flux barrier is formed between a lateral side face of the magnet and a slot face, the flux barrier having a same thickness as a thickness of the magnet.
摘要:
Disclosed are a rotor and an IPM motor capable of avoiding concentration of flux on a corner area of a magnet on the stator side, leading to reduction in demagnetizing field and accordingly reduction in a required coercive force, and reduction in the usage amount of dysprosium or the like and accordingly reduction in manufacturing cost. In a slot bored in a rotor core of a rotor making up a motor, at at least one of a slot face on a center side of the rotor core and a slot face facing this slot face is formed a protrusion or a concave groove, and the magnet to be inserted in the slot includes at least one of a concave groove and a protrusion to be engaged with the protrusion or the concave groove of the slot face at a position corresponding to the protrusion or the concave groove formed in the slot. Then, these concave groove and protrusion are engaged to form an engagement part. This engagement part aligns and fixes the magnet in the rotor, and a flux barrier is formed between a lateral side face of the magnet and a slot face, the flux harrier having a same thickness as a thickness of the magnet.
摘要:
According to the present invention, a method for determining coercivity of a coercivity distribution magnet, whereby coercivity of each portion in the coercivity distribution magnet can be determined with good accuracy without, for example, cutting the coercivity distribution magnet into pieces and thus quality assurance can be achieved with good accuracy, is provided.The coercivity determination method of the present invention comprises the following steps: a step of dividing a plane of a coercivity distribution magnet into a plurality of virtual plane segmented regions, placing the coercivity distribution magnet in a demagnetization-field-applying device, providing detectors for the plane segmented regions, and creating a demagnetization loss curve for each plane segmented region; a step of determining the minimum coercivity and the mean coercivity; a step of creating a coercivity distribution graph based on three hypotheses; and a step of determining the coercivity at an arbitrary position on the plane of the coercivity distribution magnet with the use of the coercivity distribution graph based on which the coercivity for each plane segmented region is determined.