摘要:
A packaged absorbent product including at least one absorbent article having a body surface and a garment surface. The package includes a transparent film layer and a non-white color layer disposed on the transparent film layer. The package has an opacity of 5-55%, and a speculum gloss of 0.1-90.
摘要:
A packaged absorbent product including at least one absorbent article having a body surface and a garment surface. The package includes a transparent film layer and a non-white color layer disposed on the transparent film layer. The package has an opacity of 5-55%, and a speculum gloss of 0.1-90.
摘要:
The present invention provides a method for manufacturing high tensile strength steel plate having 570 MPa (N/mm2) or larger tensile strength and having also extremely superior balance of strength and toughness both before PWHT and after PWHT to that of the conventional steel plates, by specifically specifying the temperature-rising rate at the plate thickness center portion of a quenched and tempered material during tempering, and to be concrete, the method has the steps of: casting a steel consisting essentially of 0.02 to 0.18% C, 0.05 to 0.5% Si, 0.5 to 2.0% Mn, 0.005 to 0.1% Al, 0.0005 to 0.008% N, 0.03% or less P, 0.03% or less S, by mass, and balance of Fe and inevitable impurities; hot-rolling the cast steel without cooling the steel to the Ar3 transformation point or lower temperature, or after reheating the steel to the Ac3 transformation point or higher temperature, to a specified plate thickness; cooling the steel by direct quenching from the Ar3 transformation point or higher temperature, or by accelerated cooling, to 400° C. or lower temperature; and then tempering the steel, using a heating apparatus being installed directly connecting the manufacturing line containing a rolling mill and a direct-quenching apparatus or an accelerated cooling apparatus, to 520° C. or above of the maximum ultimate temperature at the plate thickness center portion at an average temperature-rising rate of 1° C./s or larger at the plate thickness center portion up to a specified tempering temperature between 460° C. and the Ac1 transformation point.
摘要:
A moving picture data transmission apparatus according to the present invention includes: a weight assigner which assigns a weight to a macroblock on a first picture frame in accordance with the ratio of an overlap region where a reference picture block overlaps the macroblock on a picture frame; and a transmission method controller which controls a transmission method of the macroblock based on the weight assigned by the weight assigner.
摘要:
This invention provides bainite steel materials having a less scattering of properties in a thickness direction or between steel materials by using a chemical composition of C: not less than 0.001 wt % but less than 0.030 wt %, Si: not more than 0.60 wt %, Mn: 1.00-3.00 wt %, Nb: 0.005-0.20 wt %, B: 0.0003-0.0050 wt % and Al: not more than 0.100 wt % and rendering not less than 90% of the material into a bainite texture in steel materials such as thick steel plates, steel sheets, section steels, rod steels and the like.
摘要:
This invention provides bainite steel materials having a less scattering of properties in a thickness direction or between steel materials by using a chemical composition of C: not less than 0.001 wt % but less than 0.030 wt %, Si: not more than 0.60 wt %, Mn: 1.00-3.00 wt %, Nb: 0.005-0.20 wt %, B: 0.0003-0.0050 wt % and Al: not more than 0.100 wt % and rendering not less than 90% of the material into a bainite texture in steel materials such as thick steel plates, steel sheets, section steels, rod steels and the like.
摘要:
A method of manufacturing a laser welded steel pipe by forming a steel strip into a cylindrical open pipe and performing laser welding on edges that includes: emitting two laser beams along the edges from an upper surface side of the open pipe, the two laser beams being transmitted through different optical fibers with in-focus spot diameters exceeding 0.3 mm; emitting leading and trailing laser beams each inclined toward a direction in which welding proceeds at an incident angle with respect to a direction perpendicular to an upper surface of the open pipe; setting the incident angle of the leading laser beam to be larger than the incident angle of the trailing laser beam; and setting a gap between a center point of the leading laser beam and a center point of the trailing laser beam on a back surface of the open pipe to 1 mm or larger.
摘要:
Provided is a submerged arc welding method for a steel plate. In welding the steel plate from an internal surface or an external surface by a submerged arc welding, welding condition is set such that, a cross-sectional area of internal weld metal S1 and a cross-sectional area of external weld metal S2 satisfy the formula (1), the formula (2), and the formula (3), that is, 0.40≦(S1+S2)/t2≦0.80 . . . (1), S1/t2≦0.35 . . . (2), and S2/t2≦0.45 . . . (3), wherein t is a plate thickness of the steel plate (mm), S1 is a cross-sectional area of the internal weld metal (mm2) excluding the cross-sectional area of a portion of the internal weld metal overlapping with the external weld metal after external welding, and S2 is a cross-sectional area of the external weld metal (mm2).
摘要:
Steel is subjected to multiple-electrode submerged arc welding with three or more electrodes in which a direct-current power source is used to supply current to a first electrode, the welding by the first electrode is carried out at a current density of 250 A/mm2 or more, preferably with a wire diameter of 3.2 mm or less and a weld current of 1,000 A or more, the welding by the second electrode is carried out at a current density of 150 A/mm2 or more, preferably with a weld current of 600 A or more, one of the interelectrode spacings is 23 mm or more on a surface of the steel, and the remaining interelectrode spacings are 20 mm or less.
摘要翻译:钢用三电极或多层电极进行多电极埋弧焊,其中使用直流电源向第一电极供电,第一电极的焊接以250A / mm2以上,优选线径为3.2mm以下,焊接电流为1000A以上,第二电极的焊接以150A / mm 2以上的电流密度进行,优选为焊接电流 600A以上的电极间距离在钢表面上为23mm以上,其余的电极间间隔为20mm以下。
摘要:
A steel strip is formed into a cylinder so that opposite ends of the steel strip face each other, while continuously conveying the steel strip. The opposite ends are melted across the entire thickness by irradiating the opposite ends with a high-energy-density beam while applying a pressure with squeeze rolls. A seam is formed by joining the opposite ends, and excess weld metal of the seam on the outer and inner sides of the obtained welded steel pipe is removed by cutting. A repaired seam is then formed by remelting and solidifying a region on the inner side of the welded steel pipe, the region having a depth of 0.5 mm or more from the surface and a width of double or more the width of the seam, and in addition, the center line of the seam is made to coincide with the center line of the repaired seam.