Abstract:
A process for selectively removing lower molecular weight naphthenic acids from an acidic crude by treating the crude with a small pore hydrotreating catalyst at temperatures of from about 200.degree. to 370.degree. C. Removing these lower molecular weight naphthenic acids reduces the corrosive nature of acidic crudes.
Abstract:
The present invention is an apparatus for simulating corrosion activity in liquid and vapor/condensate corrosion environments. The apparatus includes a container, including a lower region containing the liquid and an upper region, including a condenser, a heater for providing heat to the lower region such that the liquid is maintained at a given temperature, a vacuum pump for providing a partial vacuum at a given pressure in the upper region of the container, one corrosion probe removably positioned in the liquid, and a second corrosion probe removably positioned above the liquid.
Abstract:
The present invention is a method to distinguish and measure normal paraffins, isoparaffins, and naphthenes in a saturated hydrocarbon mixture. The method includes the step of field-ionizing hydrocarbon mixture; separating the normal paraffins, isoparaffins and naphthenes as a separate saturates class; and detecting the normal paraffins as molecular ions, naphthenes as molecular ions, and isoparaffins as fragment ions.
Abstract:
The present invention is a process to remove a major portion of metals and coke precursors from a hydrocarbon stream. The steps of the process include contacting the feedstream with a hydrocarbon insoluble adsorbent, recovering the oil which does not adsorb and removing the metals and coke precursors from the adsorbent.
Abstract:
The present invention is an apparatus for simulating corrosion activity in liquid and vapor/condensate corrosion environments. The apparatus includes a container, including a lower region containing the liquid and an upper region, including a condenser, a heater for providing heat to the lower region such that the liquid is maintained at a given temperature, a vacuum pump for providing a partial vacuum at a given pressure in the upper region of the container, one corrosion probe removably positioned in the liquid, and a second corrosion probe removably positioned above the liquid.
Abstract:
A sample of a hydrocarbon oil containing asphaltenes is chromatographically analyzed by forming a mixture of the oil with a weak solvent. The mixture is passed in contact with a column of a stationary phase of fine solid particles of fully functionalized material, followed by a weak solvent. The solvent, after recovery from the column, is analyzed for aromatics by UV-absorption of UV radiation in the range 200 to 400 nm. The absorbance of the UV light by the irradiated eluents across the UV wavelength range is monitored and the integral of absorbance is derived as a function of photon energy across the wavelength range. The magnitude of the derived integral in at least one time interval corresponding with aromatics in the eluent from the stationary phase is measured as an indication of the level of aromatics in the oil sample. The weak solvent may be followed by a strong solvent which, in turn, may be followed by a strong solvent which is modified by the addition of a hydrogen bonding solvent.
Abstract:
A sample of a hydrocarbon oil containing asphaltenes is chromatographically analyzed by forming a mixture of the oil with a weak solvent. The mixture is passed in contact with a column of a stationary phase of fine solid particles of fully functionalized material, followed by a weak solvent. The solvent, after recovery from the column, is analyzed for aromatics by UV-absorption of UV radiation in the range 200 to 400 nm. The absorbance of the UV light by the irradiated eluents across the UV wavelength range is monitored and the integral of absorbance is derived as a function of photon energy across the wavelength range. The magnitude of the derived integral in at least one time interval corresponding with aromatics in the eluent from the stationary phase is measured as an indication of the level of aromatics in the oil sample. The weak solvent may be followed by a strong solvent which, in turn, may be followed by a strong solvent which is modified by the addition of a hydrogen bonding solvent.