摘要:
A method for making carbon nanotube particulates involves providing a catalyst comprising catalytic metals, such as iron and molybdenum or metals from Group VIB or Group VIIIB elements, on a support material, such as magnesia, and contacting the catalyst with a gaseous carbon-containing feedstock, such as methane, at a sufficient temperature and for a sufficient contact time to make small-diameter carbon nanotubes having one or more walls and outer wall diameters of less than about 3 nm. Removal of the support material from the carbon nanotubes yields particulates of enmeshed carbon nanotubes that retain an approximate three-dimensional shape and size of the particulate support that was removed. The carbon nanotube particulates can comprise ropes of carbon nanotubes. The carbon nanotube particulates disperse well in polymers and show high conductivity in polymers at low loadings. As electrical emitters, the carbon nanotube particulates exhibit very low “turn on” emission field.
摘要:
A method for making carbon nanotube particulates involves providing a catalyst comprising catalytic metals, such as iron and molybdenum or metals from Group VIB or Group VIIIB elements, on a support material, such as magnesia, and contacting the catalyst with a gaseous carbon-containing feedstock, such as methane, at a sufficient temperature and for a sufficient contact time to make small-diameter carbon nanotubes having one or more walls and outer wall diameters of less than about 3 nm. Removal of the support material from the carbon nanotubes yields particulates of enmeshed carbon nanotubes that retain an approximate three-dimensional shape and size of the particulate support that was removed. The carbon nanotube particulates can comprise ropes of carbon nanotubes. The carbon nanotube particulates disperse well in polymers and show high conductivity in polymers at low loadings. As electrical emitters, the carbon nanotube particulates exhibit very low “turn on” emission field.
摘要:
The invention relates to a composite comprising a weight fraction of single-wall carbon nanotubes and at least one polar polymer wherein the composite has an electrical and/or thermal conductivity enhanced over that of the polymer alone. The invention also comprises a method for making this polymer composition. The present application provides composite compositions that, over a wide range of single-wall carbon nanotube loading, have electrical conductivities exceeding those known in the art by more than one order of magnitude. The electrical conductivity enhancement depends on the weight fraction (F) of the single-wall carbon nanotubes in the composite. The electrical conductivity of the composite of this invention is at least 5 Siemens per centimeter (S/cm) at (F) of 0.5 (i.e. where single-wall carbon nanotube loading weight represents half of the total composite weight), at least 1 S/cm at a F of 0.1, at least 1×10−4 S/cm at (F) of 0.004, at least 6×10−9 S/cm at (F) of 0.001 and at least 3×10−16 S/cm (F) plus the intrinsic conductivity of the polymer matrix material at of 0.0001. The thermal conductivity enhancement is in excess of 1 Watt/m-° K. The polar polymer can be polycarbonate, poly(acrylic acid), poly(acrylic acid), poly(methacrylic acid), polyoxide, polysulfide, polysulfone, polyamides, polyester, polyurethane, polyimide, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinyl pyridine), poly(vinyl pyrrolidone), copolymers thereof and combinations thereof. The composite can further comprise a nonpolar polymer, such as, a polyolefin polymer, polyethylene, polypropylene, polybutene, polyisobutene, polyisoprene, polystyrene, copolymers thereof and combinations thereof.
摘要翻译:本发明涉及一种复合材料,其包含单壁碳纳米管的重量分数和至少一种极性聚合物,其中复合材料的电和/或热导率比单独聚合物的电导率和/或导热系数增强。 本发明还包括制备该聚合物组合物的方法。 本申请提供复合组合物,其在宽范围的单壁碳纳米管负载下具有超过本领域已知的超过一个数量级的电导率。 电导率增强取决于复合材料中单壁碳纳米管的重量分数(F)。 本发明的复合材料的电导率在(F)为0.5时每厘米至少5西门子(S / cm)(即单壁碳纳米管负载重量占总复合重量的一半),至少1 S / F,在(F)为0.004时至少为1×10 -4 S / cm,在(F)时为至少6×10 -9 S / cm 0.001和至少3×10 -6 / cm(F)加上聚合物基质材料的固有电导率为0.0001。 热导率提高超过1瓦/米-2°K。极性聚合物可以是聚碳酸酯,聚(丙烯酸),聚(丙烯酸),聚(甲基丙烯酸),聚氧化物,多硫化物,聚砜,聚酰胺,聚酯 ,聚氨酯,聚酰亚胺,聚(乙酸乙烯酯),聚(乙烯醇),聚(氯乙烯),聚(乙烯基吡啶),聚(乙烯基吡咯烷酮),其共聚物及其组合。 复合材料还可以包含非极性聚合物,例如聚烯烃聚合物,聚乙烯,聚丙烯,聚丁烯,聚异丁烯,聚异戊二烯,聚苯乙烯,其共聚物和它们的组合。
摘要:
The present invention relates to an all gas-phase process for the purification of single-wall carbon nanotubes and the purified single-wall carbon nanotube material. Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the sides of the single-wall carbon nanotubes and “ropes” of single-wall carbon nanotubes. The purification process removes the extraneous carbon as well as metal-containing residual catalyst particles. The process comprises oxidation of the single-wall carbon nanotube material, reduction and reaction of a halogen-containing gas with the metal-containing species. The oxidation step may be done dry or in the presence of water vapor. The present invention provides a scalable means for producing high-purity single-wall carbon nanotube material.
摘要:
A method for growing single-wall carbon nanotubes involves preparing a catalyst comprising catalytic metals, iron and molybdenum, and magnesium oxide support material and contacting the catalyst with a gaseous carbon-containing feedstock at a sufficient temperature and for a sufficient contact time to make single-wall carbon nanotubes. The weight ratio of iron and molybdenum can range from about 2 to 1 to about 10 to 1 and the metals loading up to about 10 wt % of the MgO. The catalyst can be sulfided. Methane is a suitable carbon-containing feedstock. The process can be conducted in batch, continuous or semi-continuous modes, in reactors, such as a transport reactor, fluidized bed reactor, moving bed reactors and combinations thereof. The process also includes making single-wall carbon nanotubes with catalysts comprising at least one Group VIB or Group VIIIB metal on supports such as magnesia, zirconia, silica, and alumina, where the catalyst is sulfided.
摘要:
This invention relates generally to forming arrays of single-wall carbon nanotubes (SWNT). In one embodiment, the present invention involves forming a macroscopic molecular array of tubular carbon molecules, said method comprising the step of assembling subarrays of up to 106 single-wall carbon nanotubes into a composite array.
摘要:
This invention relates generally to a method for growing carbon fiber from single-wall carbon nanotube (SWNT) molecular arrays. In one embodiment, the present invention involves a macroscopic molecular array of at least about 106 tubular carbon molecules in generally parallel orientation and having substantially similar lengths in the range of from about 50 to about 500 nanometers. The hemispheric fullerene cap is removed from the upper ends of the tubular carbon molecules in the array. The upper ends of the tubular carbon molecules in the array are then contacted with a catalytic metal. A gaseous source of carbon is supplied to the end of the array while localized energy is applied to the end of the array in order to heat the end to a temperature in the range of about 500° C. to about 1300° C. The growing carbon fiber is continuously recovered.
摘要:
A method of manufacturing an exhaust control valve includes casting first and second subhousings as separate pieces and machining smooth the inner faces of both. Each subhousing has a stem portion and a flow portion. Each flow portion defines a cylindrical bore from which a seat arc extends radially inward and approximately 180° along. The seat arc of the first subhousing lies below, and the seat arc of the second subhousing lies above, a horizontal plane that bisects the subhousings. Each seat arc has a semicircular inner sidewall that serves as a valve seat. Their inner faces facing each other, the two subhousings are mated so that their two stem portions form a stem housing and their two flow portions form a flow housing. During the mating step, the cylindrical bores are aligned to form a flow passage through the flow housing, with the two valve seats spaced equidistantly from a vertical plane defined by the inner faces along which the subhousings mate. In further steps, the method involves boring at least one bore into the stem housing. A rotatable shaft is sealingly enclosed within the bore(s) and it protrudes into the flow passage. Another step entails affixing the valve plate to the shaft so that it will pivot between the opened and closed positions as the shaft is being rotated accordingly.
摘要:
This invention relates generally to forming an array of fullerene nanotubes. In one embodiment, a macroscopic molecular array is provided comprising at least about 106 fullerene nanotubes in generally parallel orientation and having substantially similar lengths in the range of from about 5 to about 500 nanometers.
摘要:
This invention relates generally to carbon fiber produced from single-wall carbon nanotube (SWNT) molecular arrays. In one embodiment, the present invention involves a macroscopic carbon fiber comprising at least 106 signal-wall carbon nanotubes in generally parallel orientation.