Carbon Nanotube Particulates, Compositions and Use Thereof
    1.
    发明申请
    Carbon Nanotube Particulates, Compositions and Use Thereof 有权
    碳纳米管颗粒,组成和用途

    公开(公告)号:US20100254886A1

    公开(公告)日:2010-10-07

    申请号:US11531730

    申请日:2006-09-14

    IPC分类号: D01F9/12

    摘要: A method for making carbon nanotube particulates involves providing a catalyst comprising catalytic metals, such as iron and molybdenum or metals from Group VIB or Group VIIIB elements, on a support material, such as magnesia, and contacting the catalyst with a gaseous carbon-containing feedstock, such as methane, at a sufficient temperature and for a sufficient contact time to make small-diameter carbon nanotubes having one or more walls and outer wall diameters of less than about 3 nm. Removal of the support material from the carbon nanotubes yields particulates of enmeshed carbon nanotubes that retain an approximate three-dimensional shape and size of the particulate support that was removed. The carbon nanotube particulates can comprise ropes of carbon nanotubes. The carbon nanotube particulates disperse well in polymers and show high conductivity in polymers at low loadings. As electrical emitters, the carbon nanotube particulates exhibit very low “turn on” emission field.

    摘要翻译: 制造碳纳米管微粒的方法涉及提供催化剂,该催化剂包括催化金属如铁和钼或来自VIB族或VIIIB族元素的金属,在载体材料如氧化镁上,并使催化剂与气态含碳原料接触 ,例如甲烷,在足够的温度下和足够的接触时间来制备具有一个或多个壁和外壁直径小于约3nm的小直径碳纳米管。 从碳纳米管去除载体材料产生嵌入的碳纳米管的颗粒,其保留被除去的颗粒载体的近似三维形状和尺寸。 碳纳米管颗粒可以包括碳纳米管的绳索。 碳纳米管颗粒分散在聚合物中,并且在低负载下在聚合物中显示高导电性。 作为电发射体,碳纳米管微粒表现出非常低的“导通”发射场。

    Carbon nanotube particulates, compositions and use thereof
    2.
    发明授权
    Carbon nanotube particulates, compositions and use thereof 有权
    碳纳米管颗粒,组合物及其用途

    公开(公告)号:US07811542B1

    公开(公告)日:2010-10-12

    申请号:US11531730

    申请日:2006-09-14

    IPC分类号: D01F9/12 B82B1/00

    摘要: A method for making carbon nanotube particulates involves providing a catalyst comprising catalytic metals, such as iron and molybdenum or metals from Group VIB or Group VIIIB elements, on a support material, such as magnesia, and contacting the catalyst with a gaseous carbon-containing feedstock, such as methane, at a sufficient temperature and for a sufficient contact time to make small-diameter carbon nanotubes having one or more walls and outer wall diameters of less than about 3 nm. Removal of the support material from the carbon nanotubes yields particulates of enmeshed carbon nanotubes that retain an approximate three-dimensional shape and size of the particulate support that was removed. The carbon nanotube particulates can comprise ropes of carbon nanotubes. The carbon nanotube particulates disperse well in polymers and show high conductivity in polymers at low loadings. As electrical emitters, the carbon nanotube particulates exhibit very low “turn on” emission field.

    摘要翻译: 制造碳纳米管颗粒的方法涉及提供催化剂,其包含催化金属如铁和钼或VIB族或VIIIB族元素的金属,在载体材料如氧化镁上,并使催化剂与气态含碳原料接触 ,例如甲烷,在足够的温度下和足够的接触时间来制备具有一个或多个壁和外壁直径小于约3nm的小直径碳纳米管。 从碳纳米管去除载体材料产生嵌入的碳纳米管的颗粒,其保留被除去的颗粒载体的近似三维形状和尺寸。 碳纳米管颗粒可以包括碳纳米管的绳索。 碳纳米管颗粒分散在聚合物中,并且在低负载下在聚合物中显示高导电性。 作为电发射体,碳纳米管微粒表现出非常低的“导通”发射场。

    Composite materials comprising polar polymers and single-wall carbon nanotubes
    3.
    发明授权
    Composite materials comprising polar polymers and single-wall carbon nanotubes 有权
    复合材料包括极性聚合物和单壁碳纳米管

    公开(公告)号:US06936653B2

    公开(公告)日:2005-08-30

    申请号:US10389256

    申请日:2003-03-14

    摘要: The invention relates to a composite comprising a weight fraction of single-wall carbon nanotubes and at least one polar polymer wherein the composite has an electrical and/or thermal conductivity enhanced over that of the polymer alone. The invention also comprises a method for making this polymer composition. The present application provides composite compositions that, over a wide range of single-wall carbon nanotube loading, have electrical conductivities exceeding those known in the art by more than one order of magnitude. The electrical conductivity enhancement depends on the weight fraction (F) of the single-wall carbon nanotubes in the composite. The electrical conductivity of the composite of this invention is at least 5 Siemens per centimeter (S/cm) at (F) of 0.5 (i.e. where single-wall carbon nanotube loading weight represents half of the total composite weight), at least 1 S/cm at a F of 0.1, at least 1×10−4 S/cm at (F) of 0.004, at least 6×10−9 S/cm at (F) of 0.001 and at least 3×10−16 S/cm (F) plus the intrinsic conductivity of the polymer matrix material at of 0.0001. The thermal conductivity enhancement is in excess of 1 Watt/m-° K. The polar polymer can be polycarbonate, poly(acrylic acid), poly(acrylic acid), poly(methacrylic acid), polyoxide, polysulfide, polysulfone, polyamides, polyester, polyurethane, polyimide, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinyl pyridine), poly(vinyl pyrrolidone), copolymers thereof and combinations thereof. The composite can further comprise a nonpolar polymer, such as, a polyolefin polymer, polyethylene, polypropylene, polybutene, polyisobutene, polyisoprene, polystyrene, copolymers thereof and combinations thereof.

    摘要翻译: 本发明涉及一种复合材料,其包含单壁碳纳米管的重量分数和至少一种极性聚合物,其中复合材料的电和/或热导率比单独聚合物的电导率和/或导热系数增强。 本发明还包括制备该聚合物组合物的方法。 本申请提供复合组合物,其在宽范围的单壁碳纳米管负载下具有超过本领域已知的超过一个数量级的电导率。 电导率增强取决于复合材料中单壁碳纳米管的重量分数(F)。 本发明的复合材料的电导率在(F)为0.5时每厘米至少5西门子(S / cm)(即单壁碳纳米管负载重量占总复合重量的一半),至少1 S / F,在(F)为0.004时至少为1×10 -4 S / cm,在(F)时为至少6×10 -9 S / cm 0.001和至少3×10 -6 / cm(F)加上聚合物基质材料的固有电导率为0.0001。 热导率提高超过1瓦/米-2°K。极性聚合物可以是聚碳酸酯,聚(丙烯酸),聚(丙烯酸),聚(甲基丙烯酸),聚氧化物,多硫化物,聚砜,聚酰胺,聚酯 ,聚氨酯,聚酰亚胺,聚(乙酸乙烯酯),聚(乙烯醇),聚(氯乙烯),聚(乙烯基吡啶),聚(乙烯基吡咯烷酮),其共聚物及其组合。 复合材料还可以包含非极性聚合物,例如聚烯烃聚合物,聚乙烯,聚丙烯,聚丁烯,聚异丁烯,聚异戊二烯,聚苯乙烯,其共聚物和它们的组合。

    Method for making single-wall carbon nanotubes using supported catalysts
    5.
    发明授权
    Method for making single-wall carbon nanotubes using supported catalysts 有权
    使用负载催化剂制备单壁碳纳米管的方法

    公开(公告)号:US07250148B2

    公开(公告)日:2007-07-31

    申请号:US10630054

    申请日:2003-07-30

    IPC分类号: D01F9/12

    摘要: A method for growing single-wall carbon nanotubes involves preparing a catalyst comprising catalytic metals, iron and molybdenum, and magnesium oxide support material and contacting the catalyst with a gaseous carbon-containing feedstock at a sufficient temperature and for a sufficient contact time to make single-wall carbon nanotubes. The weight ratio of iron and molybdenum can range from about 2 to 1 to about 10 to 1 and the metals loading up to about 10 wt % of the MgO. The catalyst can be sulfided. Methane is a suitable carbon-containing feedstock. The process can be conducted in batch, continuous or semi-continuous modes, in reactors, such as a transport reactor, fluidized bed reactor, moving bed reactors and combinations thereof. The process also includes making single-wall carbon nanotubes with catalysts comprising at least one Group VIB or Group VIIIB metal on supports such as magnesia, zirconia, silica, and alumina, where the catalyst is sulfided.

    摘要翻译: 用于生长单壁碳纳米管的方法包括制备包含催化金属,铁和钼以及氧化镁载体材料的催化剂,并将催化剂与含气态的原料在足够的温度下接触,并使其具有足够的接触时间 - 壁碳纳米管。 铁和钼的重量比可以在约2至1至约10至1的范围内,并且金属负载量高达MgO的约10重量%。 催化剂可以被硫化。 甲烷是合适的含碳原料。 该方法可以在反应器,例如运输反应器,流化床反应器,移动床反应器及其组合中以分批,连续或半连续模式进行。 该方法还包括制备具有至少一种VIB族或VIIIB族金属的催化剂的单壁碳纳米管,其载体如氧化镁,氧化锆,二氧化硅和氧化铝,其中催化剂被硫化。

    Exhaust control valve and method of manufacturing same
    8.
    发明授权
    Exhaust control valve and method of manufacturing same 失效
    排气控制阀及其制造方法

    公开(公告)号:US06273119B1

    公开(公告)日:2001-08-14

    申请号:US09519810

    申请日:2000-03-06

    IPC分类号: F16K2700

    摘要: A method of manufacturing an exhaust control valve includes casting first and second subhousings as separate pieces and machining smooth the inner faces of both. Each subhousing has a stem portion and a flow portion. Each flow portion defines a cylindrical bore from which a seat arc extends radially inward and approximately 180° along. The seat arc of the first subhousing lies below, and the seat arc of the second subhousing lies above, a horizontal plane that bisects the subhousings. Each seat arc has a semicircular inner sidewall that serves as a valve seat. Their inner faces facing each other, the two subhousings are mated so that their two stem portions form a stem housing and their two flow portions form a flow housing. During the mating step, the cylindrical bores are aligned to form a flow passage through the flow housing, with the two valve seats spaced equidistantly from a vertical plane defined by the inner faces along which the subhousings mate. In further steps, the method involves boring at least one bore into the stem housing. A rotatable shaft is sealingly enclosed within the bore(s) and it protrudes into the flow passage. Another step entails affixing the valve plate to the shaft so that it will pivot between the opened and closed positions as the shaft is being rotated accordingly.

    摘要翻译: 制造排气控制阀的方法包括将第一和第二子房作为分开的件铸造并使两者的内表面平滑。 每个子座具有茎部和流动部分。 每个流动部分限定圆柱形孔,座弧从该圆柱孔径向向内延伸并且沿着大约180°延伸。 第一座位的座弧位于下方,第二座位的座弧位于上方,将水平平面分为二等分。 每个座弧都有一个半圆形的内侧壁,用作阀座。 它们的内表面彼此面对,两个子座配合,使得其两个杆部分形成杆壳体,并且它们的两个流动部分形成流动壳体。 在配合步骤期间,圆柱形孔对齐以形成通过流动壳体的流动通道,其中两个阀座与由子座配合的内表面限定的垂直平面等距离地间隔开。 在另外的步骤中,该方法包括将至少一个孔钻入杆壳体中。 旋转轴被密封地封闭在孔内并且突出到流动通道中。 另一步骤是将阀板固定到轴上,使得当轴正在相应地旋转时,它将在打开和关闭位置之间枢转。