摘要:
A switching network includes an upper tier having a master switch and a lower tier including a plurality of lower tier entities. The master switch, which has a plurality of ports each coupled to a respective lower tier entity, implements on each of the ports a plurality of virtual ports each corresponding to a respective one of a plurality of remote physical interfaces (RPIs) at the lower tier entity coupled to that port. Data traffic communicated between the master switch and RPIs is queued within virtual ports that correspond to the RPIs with which the data traffic is communicated. The master switch applies data handling to the data traffic in accordance with a control policy based at least upon the virtual port in which the data traffic is queued, such that the master switch applies different policies to data traffic queued to two virtual ports on the same port of the master switch.
摘要:
A switching network includes an upper tier having a master switch and a lower tier including a plurality of lower tier entities. The master switch, which has a plurality of ports each coupled to a respective lower tier entity, implements on each of the ports a plurality of virtual ports each corresponding to a respective one of a plurality of remote physical interfaces (RPIs) at the lower tier entity coupled to that port. Data traffic communicated between the master switch and RPIs is queued within virtual ports that correspond to the RPIs with which the data traffic is communicated. The master switch applies data handling to the data traffic in accordance with a control policy based at least upon the virtual port in which the data traffic is queued, such that the master switch applies different policies to data traffic queued to two virtual ports on the same port of the master switch.
摘要:
A switching network includes an upper tier having a master switch and a lower tier including a plurality of lower tier entities. The master switch, which has a plurality of ports each coupled to a respective lower tier entity, implements on each of the ports a plurality of virtual ports each corresponding to a respective one of a plurality of remote physical interfaces (RPIs) at the lower tier entity coupled to that port. Data traffic communicated between the master switch and RPIs is queued within virtual ports that correspond to the RPIs with which the data traffic is communicated. The master switch applies data handling to the data traffic in accordance with a control policy based at least upon the virtual port in which the data traffic is queued, such that the master switch applies different policies to data traffic queued to two virtual ports on the same port of the master switch.
摘要:
A communication protocol in a layer two (L2) network switch comprises, in response to a service request by a source node, registering the source node for packet communication service. The protocol further comprises forwarding one or more packets from the registered source node to one or more destination nodes. The protocol further comprises receiving packets from one or more destination nodes and forwarding each received packet to a corresponding registered node.
摘要:
A communication protocol in a layer two (L2) network switch comprises, in response to a service request by a source node, registering the source node for packet communication service. The protocol further comprises forwarding one or more packets from the registered source node to one or more destination nodes. The protocol further comprises receiving packets from one or more destination nodes and forwarding each received packet to a corresponding registered node.
摘要:
A distributed fabric system has distributed line card (DLC) chassis and scaled-out fabric coupler (SFC) chassis. Each DLC chassis includes a network processor and fabric ports. Each network processor of each DLC chassis includes a fabric interface in communication with the DLC fabric ports of that DLC chassis. Each SFC chassis includes a fabric element and fabric ports. A communication link connects each SFC fabric port to one DLC fabric port. Each communication link includes cell-carrying lanes. Each fabric element of each SFC chassis collects per-lane statistics for each SFC fabric port of that SFC chassis. Each SFC chassis includes program code that obtains the per-lane statistics collected by the fabric element chip of that SFC chassis. A network element includes program code that gathers the per-lane statistics collected by each fabric element of each SFC chassis and integrates the statistics into a topology of the entire distributed fabric system.
摘要:
A distributed fabric system has distributed line card (DLC) chassis and scaled-out fabric coupler (SFC) chassis. Each DLC chassis includes a network processor and fabric ports. Each network processor of each DLC chassis includes a fabric interface in communication with the DLC fabric ports of that DLC chassis. Each SFC chassis includes a fabric element and fabric ports. A communication link connects each SFC fabric port to one DLC fabric port. Each communication link includes cell-carrying lanes. Each fabric element of each SFC chassis collects per-lane statistics for each SFC fabric port of that SFC chassis. Each SFC chassis includes program code that obtains the per-lane statistics collected by the fabric element chip of that SFC chassis. A network element includes program code that gathers the per-lane statistics collected by each fabric element of each SFC chassis and integrates the statistics into a topology of the entire distributed fabric system.
摘要:
A switch for a switching network includes a plurality of ports for communicating data traffic and a switch controller that controls switching between the plurality of ports. The switch controller selects a forwarding path for the data traffic based on at least topological congestion information for the switching network. In a preferred embodiment, the topological congestion information includes sFlow topological congestion information and the switch controller includes an sFlow client that receives the sFlow topological congestion information from an sFlow controller in the switching network.
摘要:
A switching network has a plurality of switches including at least a switch and a managing master switch. At the managing master switch, a first capability vector (CV) is received from the switch. The managing master switch determines whether the first CV is compatible with at least a second CV in a network membership data structure that records CVs of multiple switches in the switching network. In response to detecting an incompatibility, the managing master switch initiates an image update to an image of the switch. In response to a failure of the image update at the switch, the switch boots utilizing a mini-DC module that reestablishes communication between the switch with the managing master switch and retries the image update.
摘要:
A switch of a data network implements both a bridge and a virtual bridge. In response to receipt of a data frame by the switch from an external link, the switch performs a lookup in a data structure using a source media access control (SMAC) address specified by the data frame. The switch determines if the external link is configured in a link aggregation group (LAG) and if the SMAC address is newly learned. In response to a determination that the external link is configured in a LAG and the SMAC address is newly learned, the switch associates the SMAC with the virtual bridge and communicates the association to a plurality of bridges in the data network.