摘要:
Latch position indicator systems remotely determine whether a latch assembly is latched or unlatched. The latch assembly may be a single latch assembly or a dual latch assembly. An oilfield device may be positioned with the latch assembly. Non-contact (position), contact (on/off and/or position) and hydraulic (flowmeter), both direct and indirect, embodiments include fluid measurement systems, an electrical switch system, a mechanical valve system, and proximity sensor systems.
摘要:
Latch position indicator systems remotely determine whether a latch assembly is latched or unlatched. The latch assembly may be a single latch assembly or a dual latch assembly. An oilfield device may be positioned with the latch assembly. Non-contact (position), contact (on/off and/or position) and hydraulic (flowmeter), both direct and indirect, embodiments include fluid measurement systems, an electrical switch system, a mechanical valve system, and proximity sensor systems.
摘要:
A system and method is provided for a low profile rotating control device (LP-RCD) and its housing mounted on or integral with an annular blowout preventer seal, casing, or other housing. The LP-RCD and LP-RCD housing can fit within a limited space available on drilling rigs. An embodiment allows a LP-RCD to be removably disposed with a LP-RCD housing by rotating a bearing assembly rotating plate. A sealing element may be removably disposed with the LP-RCD bearing assembly by rotating a seal retainer ring. Alternatively, a sealing element may be removably disposed with the LP-RCD bearing assembly with a seal support member threadedly attached with the LP-RCD bearing assembly. The seal support member may be locked in position with a seal locking ring removably attached with threads with the LP-RCD bearing assembly over the seal support member. Spaced apart accumulators may be disposed radially outward of the bearings in the bearing assembly to provide self lubrication to the bearings.
摘要:
A system and method is provided for a low profile rotating control device (LP-RCD) and its housing mounted on or integral with an annular blowout preventer seal, casing, or other housing. The LP-RCD and LP-RCD housing can fit within a limited space available on drilling rigs. An embodiment allows a LP-RCD to be removably disposed with a LP-RCD housing by rotating a bearing assembly rotating plate. A sealing element may be removably disposed with the LP-RCD bearing assembly by rotating a seal retainer ring. Alternatively, a sealing element may be removably disposed with the LP-RCD bearing assembly with a seal support member threadedly attached with the LP-RCD bearing assembly. The seal support member may be locked in position with a seal locking ring removably attached with threads with the LP-RCD bearing assembly over the seal support member. Spaced apart accumulators may be disposed radially outward of the bearings in the bearing assembly to provide self lubrication to the bearings.
摘要:
A Drill-To-The-Limit (DTTL) drilling method variant to Managed Pressured Drilling (MPD) applies constant surface backpressure, whether the mud is circulating (choke valve open) or not (choke valve closed). Because of the constant application of surface backpressure, the DTTL method can use lighter mud weight that still has the cutting carrying ability to keep the borehole clean. The DTTL method identifies the weakest component of the pressure containment system, such as the fracture pressure of the formation or the casing shoe leak off test (LOT). With a higher pressure rated RCD, such as 5,000 psi (34,474 kPa) dynamic or working pressure and 10,000 psi (68,948 kPa) static pressure, the limitation will generally be the facture pressure of the formation or the LOT. In the DTTL method, since surface backpressure is constantly applied, the pore pressure limitation of the conventional drilling window can be disregarded in developing the fluid and drilling programs.
摘要:
A Drill-To-The-Limit (DTTL) drilling method variant to Managed Pressure Drilling (MPD) applies constant surface backpressure, whether the mud is circulating (choke valve open) or not (choke valve closed). Because of the constant application of surface backpressure, the DTTL method can use lighter mud weight that still has the cutting carrying ability to keep the borehole clean. The DTTL method identifies the weakest component of the pressure containment system, such as the fracture pressure of the formation or the casing shoe leak off test (LOT). With a higher pressure rated RCD, such as 5,000 psi (34,474 kPa) dynamic or working pressure and 10,000 psi (68,948 kPa) static pressure, the limitation will generally be the fracture pressure of the formation or the LOT. In the DTTL method, since surface backpressure is constantly applied, the pore pressure limitation of the conventional drilling window can be disregarded in developing the fluid and drilling programs. Using the DTTL method a deeper wellbore can be drilled with larger resulting end tubulars, such as casings and production liners, than had been capable with conventional MPD applications.
摘要:
A Drill-To-The-Limit (DTTL) drilling method variant to Managed Pressure Drilling (MPD) applies constant surface backpressure, whether the mud is circulating (choke valve open) or not (choke valve closed). Because of the constant application of surface backpressure, the DTTL method can use lighter mud weight that still has the cutting carrying ability to keep the borehole clean. The DTTL method identifies the weakest component of the pressure containment system, such as the fracture pressure of the formation or the casing shoe leak off test (LOT). With a higher pressure rated RCD, such as 5,000 psi (34,474 kPa) dynamic or working pressure and 10,000 psi (68,948 kPa) static pressure, the limitation will generally be the fracture pressure of the formation or the LOT. In the DTTL method, since surface backpressure is constantly applied, the pore pressure limitation of the conventional drilling window can be disregarded in developing the fluid and drilling programs. Using the DTTL method a deeper wellbore can be drilled with larger resulting end tubulars, such as casings and production liners, than had been capable with conventional MPD applications.
摘要:
The present invention generally relates to an apparatus and a method of transmitting data from a rotating control device. In one aspect, a method of transmitting data from a rotating control device coupled to an offshore drilling unit is provided. The method includes the step of generating data relating to a parameter associated with the rotating control device. The method further includes the step of transmitting the data from a transmitting assembly coupled to the rotating control device to a receiving assembly positioned proximate the transmitting assembly. Additionally, the method includes the step of transmitting the data from the receiving assembly to the offshore drilling unit. In another aspect, a data gathering and transmitting system for use with a rotating control device coupled to an offshore drilling unit is provided. In a further aspect, a method for transmitting data generated in a rotating control device coupled to a riser is provided.
摘要:
The present invention generally relates to an apparatus and a method of transmitting data from a rotating control device. In one aspect, a method of transmitting data from a rotating control device coupled to an offshore drilling unit is provided. The method includes the step of generating data relating to a parameter associated with the rotating control device. The method further includes the step of transmitting the data from a transmitting assembly coupled to the rotating control device to a receiving assembly positioned proximate the transmitting assembly. Additionally, the method includes the step of transmitting the data from the receiving assembly to the offshore drilling unit. In another aspect, a data gathering and transmitting system for use with a rotating control device coupled to an offshore drilling unit is provided. In a further aspect, a method for transmitting data generated in a rotating control device coupled to a riser is provided.
摘要:
An acoustic control system wirelessly operates a subsea latching assembly or other subsea device, such as an active seal. The acoustic control system may control a subsea first accumulator to release its stored hydraulic fluid to operate the latch assembly or other subsea device, such as an active seal. An RCD or other oilfield device may be unlatched or latched with the latching assembly. The acoustic control system may have a surface control unit, a subsea control unit, and two or more acoustic signal devices. A valve may allow switching from an umbilical line system to the acoustic control system accumulator.